Statistics of Medical Imaging


Book Description

More work is being done in the statistical aspects of medical imaging, and this book fills the gap to provide a unified framework of study by presenting a complete look at medical imaging and statistics - from the statistical aspects of imaging technology to the statistical analysis of images. It provides technicians and students with the statistical principles that underlay medical imaging, as required reference material for researchers involved in the design of new technology. Illustrations are included throughout as are many real examples, and algorithms. The text also includes exercises developed out of the author's many years experience with studying the statistics of medical imaging.




Riemannian Geometric Statistics in Medical Image Analysis


Book Description

Over the past 15 years, there has been a growing need in the medical image computing community for principled methods to process nonlinear geometric data. Riemannian geometry has emerged as one of the most powerful mathematical and computational frameworks for analyzing such data. Riemannian Geometric Statistics in Medical Image Analysis is a complete reference on statistics on Riemannian manifolds and more general nonlinear spaces with applications in medical image analysis. It provides an introduction to the core methodology followed by a presentation of state-of-the-art methods. Beyond medical image computing, the methods described in this book may also apply to other domains such as signal processing, computer vision, geometric deep learning, and other domains where statistics on geometric features appear. As such, the presented core methodology takes its place in the field of geometric statistics, the statistical analysis of data being elements of nonlinear geometric spaces. The foundational material and the advanced techniques presented in the later parts of the book can be useful in domains outside medical imaging and present important applications of geometric statistics methodology Content includes: - The foundations of Riemannian geometric methods for statistics on manifolds with emphasis on concepts rather than on proofs - Applications of statistics on manifolds and shape spaces in medical image computing - Diffeomorphic deformations and their applications As the methods described apply to domains such as signal processing (radar signal processing and brain computer interaction), computer vision (object and face recognition), and other domains where statistics of geometric features appear, this book is suitable for researchers and graduate students in medical imaging, engineering and computer science. - A complete reference covering both the foundations and state-of-the-art methods - Edited and authored by leading researchers in the field - Contains theory, examples, applications, and algorithms - Gives an overview of current research challenges and future applications




Biostatistics for Radiologists


Book Description

The aim of this book is to present statistical problems and methods in a friendly way to radiologists, emphasizing statistical issues and methods most frequently used in radiological studies (e.g., nonparametric tests, analysis of intra- and interobserver reproducibility, comparison of sensitivity and specificity among different imaging modality, difference between clinical and screening application of diagnostic tests, ect.). The tests will be presented starting from a radiological "problem" and all examples of statistical methods applications will be "radiological".




Medical Imaging Systems


Book Description

This open access book gives a complete and comprehensive introduction to the fields of medical imaging systems, as designed for a broad range of applications. The authors of the book first explain the foundations of system theory and image processing, before highlighting several modalities in a dedicated chapter. The initial focus is on modalities that are closely related to traditional camera systems such as endoscopy and microscopy. This is followed by more complex image formation processes: magnetic resonance imaging, X-ray projection imaging, computed tomography, X-ray phase-contrast imaging, nuclear imaging, ultrasound, and optical coherence tomography.




Manual of Diagnostic Ultrasound


Book Description

Forlagets beskrivelse: The World Health Organization (WHO) recognizes ultrasound as an important medical diagnostic imaging technology. Manuals on ultrasound have been published by WHO since 2001, with the purpose of guiding health professionals on the safe and effective use of ultrasound. Among the diagnostic imaging technologies, ultrasound is the safer and least expensive, and technological advances are making it more user friendly and portable. Ultrasound has many uses, both diagnostic and therapeutic. For the purposes of this manual, only diagnostic ultrasound will be considered and further analysed. Basic physics of ultrasonographic imaging was released in 2005; since then, WHO has addressed the physics, safe use and different applications of ultrasound as an important diagnostic imaging tool. Since it is a non ionizing radiation technology, along with nuclear magnetic resonance imaging, the risks inherent to its use are lower than those presented by other diagnostic imaging technologies using ionizing radiation, such as the radiological technologies (X-rays and computed tomography scanners).




The WHO Manual of Diagnostic Imaging


Book Description

The present volume in the series of WHO manuals in diagnostic imaging, the Radiographic Anatomy and Interpretation of the Chest provides an exhaustive description of radiographic normal anatomy as well as the most common pathologic changes seen in the chest, focusing specifically on pulmonary and cardiac problems. The text aims to provide an aid to the interpretation of the chest radiograph (CXR). It is not a comprehensive account of all possible chest diseases but a descriptive text to help identify the way in which chest pathology is manifest and diagnosed on CXR. The initial chapters deal with interpretive skills and pattern recognition and the later chapters demonstrate specific pathologies. Backed by high-quality reproduction of radiographs, this manual will prove essential reading to general practitioners, medical specialists, radiographers, and radiologists in any medical settings, although focusing specifically on needs in small and mid-size hospitals.




Handbook of Medical Imaging


Book Description

This volume describes concurrent engineering developments that affect or are expected to influence future development of digital diagnostic imaging. It also covers current developments in Picture Archiving and Communications System (PACS) technology, with particular emphasis on integration of emerging imaging technologies into the hospital environment.




Artificial Intelligence in Medical Imaging


Book Description

This book provides a thorough overview of the ongoing evolution in the application of artificial intelligence (AI) within healthcare and radiology, enabling readers to gain a deeper insight into the technological background of AI and the impacts of new and emerging technologies on medical imaging. After an introduction on game changers in radiology, such as deep learning technology, the technological evolution of AI in computing science and medical image computing is described, with explanation of basic principles and the types and subtypes of AI. Subsequent sections address the use of imaging biomarkers, the development and validation of AI applications, and various aspects and issues relating to the growing role of big data in radiology. Diverse real-life clinical applications of AI are then outlined for different body parts, demonstrating their ability to add value to daily radiology practices. The concluding section focuses on the impact of AI on radiology and the implications for radiologists, for example with respect to training. Written by radiologists and IT professionals, the book will be of high value for radiologists, medical/clinical physicists, IT specialists, and imaging informatics professionals.




Visual Computing for Medicine


Book Description

Visual Computing for Medicine, Second Edition, offers cutting-edge visualization techniques and their applications in medical diagnosis, education, and treatment. The book includes algorithms, applications, and ideas on achieving reliability of results and clinical evaluation of the techniques covered. Preim and Botha illustrate visualization techniques from research, but also cover the information required to solve practical clinical problems. They base the book on several years of combined teaching and research experience. This new edition includes six new chapters on treatment planning, guidance and training; an updated appendix on software support for visual computing for medicine; and a new global structure that better classifies and explains the major lines of work in the field. - Complete guide to visual computing in medicine, fully revamped and updated with new developments in the field - Illustrated in full color - Includes a companion website offering additional content for professors, source code, algorithms, tutorials, videos, exercises, lessons, and more




Medical Image Analysis


Book Description

Medical Image Analysis presents practical knowledge on medical image computing and analysis as written by top educators and experts. This text is a modern, practical, self-contained reference that conveys a mix of fundamental methodological concepts within different medical domains. Sections cover core representations and properties of digital images and image enhancement techniques, advanced image computing methods (including segmentation, registration, motion and shape analysis), machine learning, how medical image computing (MIC) is used in clinical and medical research, and how to identify alternative strategies and employ software tools to solve typical problems in MIC. - An authoritative presentation of key concepts and methods from experts in the field - Sections clearly explaining key methodological principles within relevant medical applications - Self-contained chapters enable the text to be used on courses with differing structures - A representative selection of modern topics and techniques in medical image computing - Focus on medical image computing as an enabling technology to tackle unmet clinical needs - Presentation of traditional and machine learning approaches to medical image computing