Stepped-Frequency Radar Sensors


Book Description

This book presents the theory, analysis and design of microwave stepped-frequency radar sensors. Stepped-frequency radar sensors are attractive for various sensing applications that require fine resolution. The book consists of five chapters. The first chapter describes the fundamentals of radar sensors including applications followed by a review of ultra-wideband pulsed, frequency-modulated continuous-wave (FMCW), and stepped-frequency radar sensors. The second chapter discusses a general analysis of radar sensors including wave propagation in media and scattering on targets, as well as the radar equation. The third chapter addresses the analysis of stepped-frequency radar sensors including their principles and design parameters. Chapter 4 presents the development of two stepped-frequency radar sensors at microwave and millimeter-wave frequencies based on microwave integrated circuits (MICs), microwave monolithic integrated circuits (MMICs) and printed-circuit antennas, and discusses their signal processing. Chapter 5 provides the electrical characterization and test results of the developed microwave and millimeter-wave stepped-frequency radar sensors. Finally, a summary and conclusion is provided.




Wideband Radar


Book Description

Wideband Radar focuses on system theories and signal processing techniques for wideband radar systems. Author Professor Teng Long and his fellows present a comprehensive introduction to the fundamental theory, latest technology developments in signal processing and recent progresses in civil applications of wideband radar. Each chapter begins with an introduction describing what a reader will find in that chapter. The book is addressed to all scientists, whether at universities or in industry, who wish to keep abreast of the important advances in wideband radar. We look forward to further excitement ahead and new developments in wideband radar, and we hope to share them with you, our esteemed readers.




Emerging Materials and Advanced Designs for Wearable Antennas


Book Description

Bendable wearable materials like conductive strands, fluid metallic mixes, and polymer in paper are generally utilized as a part of the current adaptable electronic gadgets. Extra necessities are implemented in wearable applications. Characteristic elastic, for example, is an appealing exchange adaptable material that is biocompatible and offers high conductivity, low lost, simplicity to make, and most importantly, it is water/climate safe and condition amicable. The wearable antenna is one of the key components to establish body area network (BAN) for wireless communication, which is why it has become such an important part of antenna research. Wearable antennas are being applied successfully in various parts of life such as health monitoring, physical training, navigation, RFID, medicine, military, and more. Emerging Materials and Advanced Designs for Wearable Antennas explores how wearable antenna technology is being employed to enhance the quality of life in various industries. The technologies implemented and success of these antenna technologies is essential in the emerging field of wearable computing and is discussed in detail within the contents of this book. While covering essential topics such as the optimization of antenna material, improvement in flexible antenna performance, synthesis and design aspects of antennas, and transmission and receiving of the bendable antenna, this book is ideal for the military field, scientists, the medical field, practitioners, stakeholders, researchers, academicians, and students looking for the most advanced and updated research on the technology and implementation of wearable antennas spanning multiple industries.




Principles of Modern Radar


Book Description

Principles of Modern Radar: Basic Principles is a comprehensive text for courses in radar systems and technology, a professional training textbook for formal in-house courses and for new hires; a reference for ongoing study following a radar short course and a self-study and professional reference book.




Low Power Emerging Wireless Technologies


Book Description

Advanced concepts for wireless communications offer a vision of technology that is embedded in our surroundings and practically invisible, but present whenever required. Although the use of deep submicron CMOS processes allows for an unprecedented degree of scaling in digital circuitry, it complicates the implementation and integration of traditional RF circuits. The requirement for long operating life under limited energy supply also poses severe design constraints, particularly in critical applications in commerce, healthcare, and security. These challenges call for innovative design solutions at the circuit and system levels. Low Power Emerging Wireless Technologies addresses the crucial scientific and technological challenges for the realization of fully integrated, highly efficient, and cost-effective solutions for emerging wireless applications. Get Insights from the Experts on Wireless Circuit Design The book features contributions by top international experts in wireless circuit design representing both industry and academia. They explore the state of the art in wireless communication for 3G and 4G cellular networks, millimeter-wave applications, wireless sensor networks, and wireless medical technologies. The emphasis is on low-power wireless applications, RF building blocks for wireless applications, and short-distance and beam steering. Topics covered include new opportunities in body area networks, medical implants, satellite communications, automobile radar detection, and wearable electronics. Exploit the Potential behind Emerging Green Wireless Technologies A must for anyone serious about future wireless technologies, this multidisciplinary book discusses the challenges of emerging power-efficient applications. Written for practicing engineers in the wireless communication field who have some experience in integrated circuits, it is also a valuable resource for graduate students.




Medical and Biological Microwave Sensors and Systems


Book Description

In this comprehensive work, experts in the field detail recent advances in medical and biological microwave sensors and systems, with chapters on topics such as implantable sensors, wearable microwave tags, and UWB technology. Each chapter explores the theory behind the technology, as well as its design and implementation. This is supported by practical examples and details of experimental results, along with discussion of system design, design trade-offs, and possible constraints and manufacturing issues. Applications described include intracranial pressure monitoring, vital signs monitoring, and non-invasive molecular and cellular investigations. Presenting new research and advances in the field, and focusing on the state of the art in medical and biological microwave sensors, this work is an invaluable resource for enthusiastic researchers and practicing engineers in the fields of electrical engineering, biomedical engineering, and medical physics.




Radar for Indoor Monitoring


Book Description

This book aims to capture recent advances and breakthroughs in in-home radar monitoring of human motions and activities. It addresses three key attributes of radar for in-door human monitoring, namely: motion classification including fall, detection of vital signs, and categorization of human gait for risk assessment and progression of physical impairments and disabilities. It explores recent developments in radar technology for human monitoring inside homes and residences. The reader will learn enhanced detection and classification techniques of radar signals associated with human micro- and macro-motions. Furthermore, the book includes examples using real data collected from healthy individuals, patients, and retirement communities based on the subject Doppler and range information, and using different single and multi-antenna radar system configurations. Results are also presented using modeled data based on biomechanics and kinematics. Indoor monitoring is further demonstrated using alternative technologies of infrared sensors and RF signals of opportunities.




Small and Short-Range Radar Systems


Book Description

Radar Expert, Esteemed Author Gregory L. Charvat on CNN and CBSAuthor Gregory L. Charvat appeared on CNN on March 17, 2014 to discuss whether Malaysia Airlines Flight 370 might have literally flown below the radar. He appeared again on CNN on March 20, 2014 to explain the basics of radar, and he explored the hope and limitations of the technology i




Planar Microwave Sensors


Book Description

Comprehensive resource detailing the latest advances in microwave and wireless sensors implemented in planar technology Planar Microwave Sensors is an authoritative resource on the subject, discussing the main relevant sensing strategies, working principles, and applications on the basis of the authors’ own experience and background, while also highlighting the most relevant contributions to the topic reported by international research groups. The authors provide an overview of planar microwave sensors grouped by chapters according to their working principle. In each chapter, the working principle is explained in detail and the specific sensor design strategies are discussed, including validation examples at both simulation and experimental level. The most suited applications in each case are also reported. The necessary theory and analysis for sensor design are further provided, with special emphasis on performance improvement (i.e., sensitivity and resolution optimization, dynamic range, etc.). Lastly, the work covers a number of applications, from material characterization to biosensing, including motion control sensors, microfluidic sensors, industrial sensors, and more. Sample topics covered in the work include: Non-resonant and resonant sensors, reflective-mode and transmission-mode sensors, single-ended and differential sensors, and contact and contactless sensors Design guidelines for sensor performance optimization and analytical methods to retrieve the variables of interest from the measured sensor responses Radiofrequency identification (RFID) sensor types, prospective applications, and materials/technologies towards “green sensors” implementation Comparisons between different technologies for sensing and the advantages and limitations of microwave sensors, particularly planar sensors Engineers and qualified professionals involved in sensor technologies, along with undergraduate and graduate students in related programs of study, can harness the valuable information inside Planar Microwave Sensors to gain complete foundational knowledge on the subject and stay up to date on the latest research and developments in the field.




Inverse Synthetic Aperture Radar Imaging With MATLAB Algorithms


Book Description

Build your knowledge of SAR/ISAR imaging with this comprehensive and insightful resource The newly revised Second Edition of Inverse Synthetic Aperture Radar Imaging with MATLAB Algorithms covers in greater detail the fundamental and advanced topics necessary for a complete understanding of inverse synthetic aperture radar (ISAR) imaging and its concepts. Distinguished author and academician, Caner Özdemir, describes the practical aspects of ISAR imaging and presents illustrative examples of the radar signal processing algorithms used for ISAR imaging. The topics in each chapter are supplemented with MATLAB codes to assist readers in better understanding each of the principles discussed within the book. This new edition incudes discussions of the most up-to-date topics to arise in the field of ISAR imaging and ISAR hardware design. The book provides a comprehensive analysis of advanced techniques like Fourier-based radar imaging algorithms, and motion compensation techniques along with radar fundamentals for readers new to the subject. The author covers a wide variety of topics, including: Radar fundamentals, including concepts like radar cross section, maximum detectable range, frequency modulated continuous wave, and doppler frequency and pulsed radar The theoretical and practical aspects of signal processing algorithms used in ISAR imaging The numeric implementation of all necessary algorithms in MATLAB ISAR hardware, emerging topics on SAR/ISAR focusing algorithms such as bistatic ISAR imaging, polarimetric ISAR imaging, and near-field ISAR imaging, Applications of SAR/ISAR imaging techniques to other radar imaging problems such as thru-the-wall radar imaging and ground-penetrating radar imaging Perfect for graduate students in the fields of electrical and electronics engineering, electromagnetism, imaging radar, and physics, Inverse Synthetic Aperture Radar Imaging With MATLAB Algorithms also belongs on the bookshelves of practicing researchers in the related areas looking for a useful resource to assist them in their day-to-day professional work.