Stochastic Differential Equations on Manifolds


Book Description

The aims of this book, originally published in 1982, are to give an understanding of the basic ideas concerning stochastic differential equations on manifolds and their solution flows, to examine the properties of Brownian motion on Riemannian manifolds when it is constructed using the stochiastic development and to indicate some of the uses of the theory. The author has included two appendices which summarise the manifold theory and differential geometry needed to follow the development; coordinate-free notation is used throughout. Moreover, the stochiastic integrals used are those which can be obtained from limits of the Riemann sums, thereby avoiding much of the technicalities of the general theory of processes and allowing the reader to get a quick grasp of the fundamental ideas of stochastic integration as they are needed for a variety of applications.




Stochastic Calculus in Manifolds


Book Description

Addressed to both pure and applied probabilitists, including graduate students, this text is a pedagogically-oriented introduction to the Schwartz-Meyer second-order geometry and its use in stochastic calculus. P.A. Meyer has contributed an appendix: "A short presentation of stochastic calculus" presenting the basis of stochastic calculus and thus making the book better accessible to non-probabilitists also. No prior knowledge of differential geometry is assumed of the reader: this is covered within the text to the extent. The general theory is presented only towards the end of the book, after the reader has been exposed to two particular instances - martingales and Brownian motions - in manifolds. The book also includes new material on non-confluence of martingales, s.d.e. from one manifold to another, approximation results for martingales, solutions to Stratonovich differential equations. Thus this book will prove very useful to specialists and non-specialists alike, as a self-contained introductory text or as a compact reference.




Applied Stochastic Differential Equations


Book Description

With this hands-on introduction readers will learn what SDEs are all about and how they should use them in practice.




Stochastic Analysis on Manifolds


Book Description

Mainly from the perspective of a probabilist, Hsu shows how stochastic analysis and differential geometry can work together for their mutual benefit. He writes for researchers and advanced graduate students with a firm foundation in basic euclidean stochastic analysis, and differential geometry. He does not include the exercises usual to such texts, but does provide proofs throughout that invite readers to test their understanding. Annotation copyrighted by Book News Inc., Portland, OR.




Probability Towards 2000


Book Description

Senior probabilists from around the world with widely differing specialities gave their visions of the state of their specialty, why they think it is important, and how they think it will develop in the new millenium. The volume includes papers given at a symposium at Columbia University in 1995, but papers from others not at the meeting were added to broaden the coverage of areas. All papers were refereed.




Stochastic Flows and Stochastic Differential Equations


Book Description

The main purpose of this book is to give a systematic treatment of the theory of stochastic differential equations and stochastic flow of diffeomorphisms, and through the former to study the properties of stochastic flows.The classical theory was initiated by K. Itô and since then has been much developed. Professor Kunita's approach here is to regard the stochastic differential equation as a dynamical system driven by a random vector field, including thereby Itô's theory as a special case. The book can be used with advanced courses on probability theory or for self-study.




Stochastic Equations and Differential Geometry


Book Description

'Et moi ..., si j'avait su comment en revenir, One service mathematics has rendered the je n'y serais point aile.' human race. It has put common sense back Jules Verne where it belongs, on the topmost shelf next to the dusty canister labelled 'discarded n- sense'. The series is divergent; therefore we may be able to do something with it. Eric T. Bell O. Heaviside Mathematics is a tool for thought. A highly necessary tool in a world where both feedback and non linearities abound. Similarly, all kinds of parts of mathematics serve as tools for other parts and for other sciences. Applying a simple rewriting rule to the quote on the right above one finds such statements as: 'One service topology has rendered mathematical physics ... '; 'One service logic has rendered com puter science .. .'; 'One service category theory has rendered mathematics .. .'. All arguably true. And all statements obtainable this way form part of the raison d'etre of this series.




Analysis and Partial Differential Equations on Manifolds, Fractals and Graphs


Book Description

The book covers the latest research in the areas of mathematics that deal the properties of partial differential equations and stochastic processes on spaces in connection with the geometry of the underlying space. Written by experts in the field, this book is a valuable tool for the advanced mathematician.




Diffusion Processes and Related Problems in Analysis, Volume II


Book Description

During the weekend of March 16-18, 1990 the University of North Carolina at Charlotte hosted a conference on the subject of stochastic flows, as part of a Special Activity Month in the Department of Mathematics. This conference was supported jointly by a National Science Foundation grant and by the University of North Carolina at Charlotte. Originally conceived as a regional conference for researchers in the Southeastern United States, the conference eventually drew participation from both coasts of the U. S. and from abroad. This broad-based par ticipation reflects a growing interest in the viewpoint of stochastic flows, particularly in probability theory and more generally in mathematics as a whole. While the theory of deterministic flows can be considered classical, the stochastic counterpart has only been developed in the past decade, through the efforts of Harris, Kunita, Elworthy, Baxendale and others. Much of this work was done in close connection with the theory of diffusion processes, where dynamical systems implicitly enter probability theory by means of stochastic differential equations. In this regard, the Charlotte conference served as a natural outgrowth of the Conference on Diffusion Processes, held at Northwestern University, Evanston Illinois in October 1989, the proceedings of which has now been published as Volume I of the current series. Due to this natural flow of ideas, and with the assistance and support of the Editorial Board, it was decided to organize the present two-volume effort.




Stochastic Differential Equations and Diffusion Processes


Book Description

Being a systematic treatment of the modern theory of stochastic integrals and stochastic differential equations, the theory is developed within the martingale framework, which was developed by J.L. Doob and which plays an indispensable role in the modern theory of stochastic analysis.A considerable number of corrections and improvements have been made for the second edition of this classic work. In particular, major and substantial changes are in Chapter III and Chapter V where the sections treating excursions of Brownian Motion and the Malliavin Calculus have been expanded and refined. Sections discussing complex (conformal) martingales and Kahler diffusions have been added.