Stochastic Differential Systems Analysis and Filtering


Book Description

Gives applied methods for studying stochastic differential systems--in particular, the methods for finding the finite-dimensional distributions of the state vector and of the output of such systems, and also the estimation methods of the state and of the parameters of differential systems based on observations (filtering and extrapolation theory). Also studied are stochastic differential equations of general type with arbitrary processes and independent increments. The equations with Wiener processes are considered as a special case. The construction of stochastic differential systems in the book is based on Pugachev's equations for finite-dimensional characteristic functions of the processes determined by stochastic differential equations. Includes end-of-chapter problems.




Stochastic Differential Systems I


Book Description

This book is an outgrowth of a graduate course by the same title given at UCLA (System Science Department). presenting a Functional Analysis approach to Stochastic Filtering and Control Problems. As the writing progressed. several new points of view were developed and as a result the present work is more in the nature of a monograph on the subject than a distilled compendium of extant works. The subject of this volume is at the heart of the most used part of modern Control Theory - indeed. the bread-and-butter part. It includes the Linear (Bucy-Kalman) Filter Theory. the Feedback Control (regulation and trz.cking) Theory for plants with random disturbances. and Stochastic DifEerential Games. Linear Filter Theory is developed by a 3-Martingale approach and is perhaps the sleekest one to date. We hasten to add that although the terITlS are Engineering-oriented. and a background in Control Engineering is essential to understand the motiva tion. the work is totally mathematical. and in fact our aim is a rigorous mathematical presentation that is at once systematic. We begin with some preliminary necessary notions relating to Stochastic Processes. We follow Parthasarathy's work in inducing Wiener measure on the Banach Space of Continuous functions. We introduce the linear Stochastic integrals right away. We are then ready to treat linear Stochastic Differential Equations. We then look at the measures induced.




Applied Stochastic Differential Equations


Book Description

With this hands-on introduction readers will learn what SDEs are all about and how they should use them in practice.




Stochastic Analysis, Filtering, and Stochastic Optimization


Book Description

This volume is a collection of research works to honor the late Professor Mark H.A. Davis, whose pioneering work in the areas of Stochastic Processes, Filtering, and Stochastic Optimization spans more than five decades. Invited authors include his dissertation advisor, past collaborators, colleagues, mentees, and graduate students of Professor Davis, as well as scholars who have worked in the above areas. Their contributions may expand upon topics in piecewise deterministic processes, pathwise stochastic calculus, martingale methods in stochastic optimization, filtering, mean-field games, time-inconsistency, as well as impulse, singular, risk-sensitive and robust stochastic control.




Theory of Stochastic Differential Equations with Jumps and Applications


Book Description

Stochastic differential equations (SDEs) are a powerful tool in science, mathematics, economics and finance. This book will help the reader to master the basic theory and learn some applications of SDEs. In particular, the reader will be provided with the backward SDE technique for use in research when considering financial problems in the market, and with the reflecting SDE technique to enable study of optimal stochastic population control problems. These two techniques are powerful and efficient, and can also be applied to research in many other problems in nature, science and elsewhere.




An Introduction to Stochastic Filtering Theory


Book Description

Stochastic Filtering Theory uses probability tools to estimate unobservable stochastic processes that arise in many applied fields including communication, target-tracking, and mathematical finance.As a topic, Stochastic Filtering Theory has progressed rapidly in recent years. For example, the (branching) particle system representation of the optimal filter has been extensively studied to seek more effective numerical approximations of the optimal filter; the stability of the filter with "incorrect" initial state, as well as the long-term behavior of the optimal filter, has attracted the attention of many researchers; and although still in its infancy, the study of singular filteringmodels has yielded exciting results.In this text, Jie Xiong introduces the reader to the basics of Stochastic Filtering Theory before covering these key recent advances. The text is written in a style suitable for graduates in mathematics and engineering with a background in basic probability.




Stochastic Processes and Filtering Theory


Book Description

This unified treatment of linear and nonlinear filtering theory presents material previously available only in journals, and in terms accessible to engineering students. Its sole prerequisites are advanced calculus, the theory of ordinary differential equations, and matrix analysis. Although theory is emphasized, the text discusses numerous practical applications as well. Taking the state-space approach to filtering, this text models dynamical systems by finite-dimensional Markov processes, outputs of stochastic difference, and differential equations. Starting with background material on probability theory and stochastic processes, the author introduces and defines the problems of filtering, prediction, and smoothing. He presents the mathematical solutions to nonlinear filtering problems, and he specializes the nonlinear theory to linear problems. The final chapters deal with applications, addressing the development of approximate nonlinear filters, and presenting a critical analysis of their performance.







Fundamentals of Stochastic Filtering


Book Description

This book provides a rigorous mathematical treatment of the non-linear stochastic filtering problem using modern methods. Particular emphasis is placed on the theoretical analysis of numerical methods for the solution of the filtering problem via particle methods. The book should provide sufficient background to enable study of the recent literature. While no prior knowledge of stochastic filtering is required, readers are assumed to be familiar with measure theory, probability theory and the basics of stochastic processes. Most of the technical results that are required are stated and proved in the appendices. Exercises and solutions are included.




Stochastic Analysis


Book Description

This book is intended for university seniors and graduate students majoring in probability theory or mathematical finance. In the first chapter, results in probability theory are reviewed. Then, it follows a discussion of discrete-time martingales, continuous time square integrable martingales (particularly, continuous martingales of continuous paths), stochastic integrations with respect to continuous local martingales, and stochastic differential equations driven by Brownian motions. In the final chapter, applications to mathematical finance are given. The preliminary knowledge needed by the reader is linear algebra and measure theory. Rigorous proofs are provided for theorems, propositions, and lemmas. In this book, the definition of conditional expectations is slightly different than what is usually found in other textbooks. For the Doob–Meyer decomposition theorem, only square integrable submartingales are considered, and only elementary facts of the square integrable functions are used in the proof. In stochastic differential equations, the Euler–Maruyama approximation is used mainly to prove the uniqueness of martingale problems and the smoothness of solutions of stochastic differential equations.