Stochastic Geometry Analysis of Multi-Antenna Wireless Networks


Book Description

This book presents a unified framework for the tractable analysis of large-scale, multi-antenna wireless networks using stochastic geometry. This mathematical analysis is essential for assessing and understanding the performance of complicated multi-antenna networks, which are one of the foundations of 5G and beyond networks to meet the ever-increasing demands for network capacity. Describing the salient properties of the framework, which makes the analysis of multi-antenna networks comparable to that of their single-antenna counterparts, the book discusses effective design approaches that do not require complex system-level simulations. It also includes various application examples with different multi-antenna network models to illustrate the framework’s effectiveness.




Capacity of Multi-antenna Ad Hoc Networks Via Stochastic Geometry


Book Description

This thesis takes as its objective quantifying, comparing, and optimizing multiple-antenna (MIMO) physical layer techniques in dense ad hoc wireless networks. A framework is developed from the spatial shot noise interference model for packet radio network analysis. The framework captures the behavior of a wide variety of signal and interference distributions, which permit inspection of a number of signal processing methods including representatives from most of the major MIMO techniques. Multi-antenna systems for point-to-point are becoming mature and being developed and deployed in many wireless communication systems due to their potential to combat fading, increase spectral efficiency, and overcome interference. The framework permits an algorithm or system designer to view the network from the perspective of a typical user, to optimize performance in the midst of a given environment, or to view the network as a whole, to determine behavior that maximizes network performance. In particular, it enables questions to be answered quantitatively, such as which MIMO techniques perform best in a given environment? Or what rate and power settings should be used across the available spatial modes? Or what is the maximum benefit of channel state information? Or what gain should an individual device, or the network as a whole expect to see given a particular physical layer strategy? The dissertation begins by developing the framework for a generic set of assumptions on network behavior and signal and interference distributions. It then presents a progression of applications to representative MIMO techniques. Broad and intuitive scaling laws are developed as well as detailed exact results for careful comparison. Capacity scaling with the number of antennas is given for systems employing beamforming, selection combining, space-time block coding, and spatial multiplexing. These applications are used as the basis for developing simple distributed algorithms for optimizing MIMO settings with QoS constraints and in heterogeneous networks. Lastly, the framework is expanded to permit comparison and optimization of MIMO performance under alternative medium access strategies. In general it is found that significant performance gains can be reaped with multi-antenna physical layers, provided the proper techniques are employed. It is also shown that the availability of multiple spatial channels impacts the inherent tradeoff between per-link throughput and spatial reuse.




Stochastic Geometry Analysis of Cellular Networks


Book Description

Achieve faster and more efficient network design and optimization with this comprehensive guide. Some of the most prominent researchers in the field explain the very latest analytic techniques and results from stochastic geometry for modelling the signal-to-interference-plus-noise ratio (SINR) distribution in heterogeneous cellular networks. This book will help readers to understand the effects of combining different system deployment parameters on key performance indicators such as coverage and capacity, enabling the efficient allocation of simulation resources. In addition to covering results for network models based on the Poisson point process, this book presents recent results for when non-Poisson base station configurations appear Poisson, due to random propagation effects such as fading and shadowing, as well as non-Poisson models for base station configurations, with a focus on determinantal point processes and tractable approximation methods. Theoretical results are illustrated with practical Long-Term Evolution (LTE) applications and compared with real-world deployment results.




Stochastic Geometry and Wireless Networks


Book Description

This volume bears on wireless network modeling and performance analysis. The aim is to show how stochastic geometry can be used in a more or less systematic way to analyze the phenomena that arise in this context. It first focuses on medium access control mechanisms used in ad hoc networks and in cellular networks. It then discusses the use of stochastic geometry for the quantitative analysis of routing algorithms in mobile ad hoc networks. The appendix also contains a concise summary of wireless communication principles and of the network architectures considered in the two volumes.




Stochastic Geometry for Wireless Networks


Book Description

Analyse wireless network performance and improve design choices for future architectures and protocols with this rigorous introduction to stochastic geometry.




An Introduction to Cellular Network Analysis Using Stochastic Geometry


Book Description

This book provides an accessible yet rigorous first reference for readers interested in learning how to model and analyze cellular network performance using stochastic geometry. In addition to the canonical downlink and uplink settings, analyses of heterogeneous cellular networks and dense cellular networks are also included. For each of these settings, the focus is on the calculation of coverage probability, which gives the complementary cumulative distribution function (ccdf) of signal-to-interference-and-noise ratio (SINR) and is the complement of the outage probability. Using this, other key performance metrics, such as the area spectral efficiency, are also derived. These metrics are especially useful in understanding the effect of densification on network performance. In order to make this a truly self-contained reference, all the required background material from stochastic geometry is introduced in a coherent and digestible manner. This Book: Provides an approachable introduction to the analysis of cellular networks and illuminates key system dependencies Features an approach based on stochastic geometry as applied to cellular networks including both downlink and uplink Focuses on the statistical distribution of signal-to-interference-and-noise ratio (SINR) and related metrics




Stochastic Geometry and Wireless Networks: Applications


Book Description

This volume bears on wireless network modeling and performance analysis. The aim is to show how stochastic geometry can be used in a more or less systematic way to analyze the phenomena that arise in this context. It first focuses on medium access control mechanisms used in ad hoc networks and in cellular networks. It then discusses the use of stochastic geometry for the quantitative analysis of routing algorithms in mobile ad hoc networks. The appendix also contains a concise summary of wireless communication principles and of the network architectures considered in the two volumes.




Stochastic Geometry Analysis of Cellular Networks


Book Description

Achieve faster and more efficient network design and optimization with this comprehensive guide. Some of the most prominent researchers in the field explain the very latest analytic techniques and results from stochastic geometry for modelling the signal-to-interference-plus-noise ratio (SINR) distribution in heterogeneous cellular networks. This book will help readers to understand the effects of combining different system deployment parameters on key performance indicators such as coverage and capacity, enabling the efficient allocation of simulation resources. In addition to covering results for network models based on the Poisson point process, this book presents recent results for when non-Poisson base station configurations appear Poisson, due to random propagation effects such as fading and shadowing, as well as non-Poisson models for base station configurations, with a focus on determinantal point processes and tractable approximation methods. Theoretical results are illustrated with practical Long-Term Evolution (LTE) applications and compared with real-world deployment results.







mmWave Massive MIMO


Book Description

mmWave Massive MIMO: A Paradigm for 5G is the first book of its kind to hinge together related discussions on mmWave and Massive MIMO under the umbrella of 5G networks. New networking scenarios are identified, along with fundamental design requirements for mmWave Massive MIMO networks from an architectural and practical perspective. Working towards final deployment, this book updates the research community on the current mmWave Massive MIMO roadmap, taking into account the future emerging technologies emanating from 3GPP/IEEE. The book's editors draw on their vast experience in international research on the forefront of the mmWave Massive MIMO research arena and standardization. This book aims to talk openly about the topic, and will serve as a useful reference not only for postgraduates students to learn more on this evolving field, but also as inspiration for mobile communication researchers who want to make further innovative strides in the field to mark their legacy in the 5G arena. Contains tutorials on the basics of mmWave and Massive MIMO Identifies new 5G networking scenarios, along with design requirements from an architectural and practical perspective Details the latest updates on the evolution of the mmWave Massive MIMO roadmap, considering future emerging technologies emanating from 3GPP/IEEE Includes contributions from leading experts in the field in modeling and prototype design for mmWave Massive MIMO design Presents an ideal reference that not only helps postgraduate students learn more in this evolving field, but also inspires mobile communication researchers towards further innovation