Stochastic Geometry, Spatial Statistics and Random Fields


Book Description

This volume is an attempt to provide a graduate level introduction to various aspects of stochastic geometry, spatial statistics and random fields, with special emphasis placed on fundamental classes of models and algorithms as well as on their applications, e.g. in materials science, biology and genetics. This book has a strong focus on simulations and includes extensive codes in Matlab and R which are widely used in the mathematical community. It can be seen as a continuation of the recent volume 2068 of Lecture Notes in Mathematics, where other issues of stochastic geometry, spatial statistics and random fields were considered with a focus on asymptotic methods.




Stochastic Geometry, Spatial Statistics and Random Fields


Book Description

This volume provides a modern introduction to stochastic geometry, random fields and spatial statistics at a (post)graduate level. It is focused on asymptotic methods in geometric probability including weak and strong limit theorems for random spatial structures (point processes, sets, graphs, fields) with applications to statistics. Written as a contributed volume of lecture notes, it will be useful not only for students but also for lecturers and researchers interested in geometric probability and related subjects.




Stochastic Geometry


Book Description

This volume offers a unique and accessible overview of the most active fields in Stochastic Geometry, up to the frontiers of recent research. Since 2014, the yearly meeting of the French research structure GDR GeoSto has been preceded by two introductory courses. This book contains five of these introductory lectures. The first chapter is a historically motivated introduction to Stochastic Geometry which relates four classical problems (the Buffon needle problem, the Bertrand paradox, the Sylvester four-point problem and the bicycle wheel problem) to current topics. The remaining chapters give an application motivated introduction to contemporary Stochastic Geometry, each one devoted to a particular branch of the subject: understanding spatial point patterns through intensity and conditional intensities; stochastic methods for image analysis; random fields and scale invariance; and the theory of Gibbs point processes. Exposing readers to a rich theory, this book will encourage further exploration of the subject and its wide applications.




Theory of Spatial Statistics


Book Description

Theory of Spatial Statistics: A Concise Introduction presents the most important models used in spatial statistics, including random fields and point processes, from a rigorous mathematical point of view and shows how to carry out statistical inference. It contains full proofs, real-life examples and theoretical exercises. Solutions to the latter are available in an appendix. Assuming maturity in probability and statistics, these concise lecture notes are self-contained and cover enough material for a semester course. They may also serve as a reference book for researchers. Features * Presents the mathematical foundations of spatial statistics. * Contains worked examples from mining, disease mapping, forestry, soil and environmental science, and criminology. * Gives pointers to the literature to facilitate further study. * Provides example code in R to encourage the student to experiment. * Offers exercises and their solutions to test and deepen understanding. The book is suitable for postgraduate and advanced undergraduate students in mathematics and statistics.




Statistical Physics and Spatial Statistics


Book Description

Modern physics is confronted with a large variety of complex spatial patterns. Although both spatial statisticians and statistical physicists study random geometrical structures, there has been only little interaction between the two up to now because of different traditions and languages. This volume aims to change this situation by presenting in a clear way fundamental concepts of spatial statistics which are of great potential value for condensed matter physics and materials sciences in general, and for porous media, percolation and Gibbs processes in particular. Geometric aspects, in particular ideas of stochastic and integral geometry, play a central role throughout. With nonspecialist researchers and graduate students also in mind, prominent physicists give an excellent introduction here to modern ideas of statistical physics pertinent to this exciting field of research.




Stochastic Geometry and its Applications


Book Description

The Wiley Paperback Series makes valuable content more accessible to a new generation of statisticians, mathematicians and scientists. Stochastic geometry and spatial statistics play a fundamental role in many modern branches of physics, materials sciences, biology and environmental sciences. They offer successful models for the description of random two- and three-dimensional micro and macro structures and statistical methods for their analysis. The book deals with the following topics: point processes random sets random measures random shapes fibre and surface processes tessellations stereological methods. This book has served as the key reference in its field for over 20 years and is regarded as the best treatment of the subject of stochastic geometry, both as an subject with vital applications to spatial statistics and as a very interesting field of mathematics in its own right.




Stochastic Geometry


Book Description

Stochastic geometry involves the study of random geometric structures, and blends geometric, probabilistic, and statistical methods to provide powerful techniques for modeling and analysis. Recent developments in computational statistical analysis, particularly Markov chain Monte Carlo, have enormously extended the range of feasible applications. Stochastic Geometry: Likelihood and Computation provides a coordinated collection of chapters on important aspects of the rapidly developing field of stochastic geometry, including: o a "crash-course" introduction to key stochastic geometry themes o considerations of geometric sampling bias issues o tesselations o shape o random sets o image analysis o spectacular advances in likelihood-based inference now available to stochastic geometry through the techniques of Markov chain Monte Carlo




Stochastic Geometry


Book Description

Stochastic Geometry is the mathematical discipline which studies mathematical models for random geometric structures. This book collects lectures presented at the CIME summer school in Martina Franca in September 2004. The main lecturers covered Spatial Statistics, Random Points, Integral Geometry and Random Sets. These are complemented by two additional contributions on Random Mosaics and Crystallization Processes. The book presents a comprehensive and up-to-date description of important aspects of Stochastic Geometry.




Stochastic and Integral Geometry


Book Description

Stochastic geometry deals with models for random geometric structures. Its early beginnings are found in playful geometric probability questions, and it has vigorously developed during recent decades, when an increasing number of real-world applications in various sciences required solid mathematical foundations. Integral geometry studies geometric mean values with respect to invariant measures and is, therefore, the appropriate tool for the investigation of random geometric structures that exhibit invariance under translations or motions. Stochastic and Integral Geometry provides the mathematically oriented reader with a rigorous and detailed introduction to the basic stationary models used in stochastic geometry – random sets, point processes, random mosaics – and to the integral geometry that is needed for their investigation. The interplay between both disciplines is demonstrated by various fundamental results. A chapter on selected problems about geometric probabilities and an outlook to non-stationary models are included, and much additional information is given in the section notes.




Electron-Photon Cascades


Book Description