Stochastic Inequalities and Applications


Book Description

Concentration inequalities, which express the fact that certain complicated random variables are almost constant, have proven of utmost importance in many areas of probability and statistics. This volume contains refined versions of these inequalities, and their relationship to many applications particularly in stochastic analysis. The broad range and the high quality of the contributions make this book highly attractive for graduates, postgraduates and researchers in the above areas.




Harnack Inequalities for Stochastic Partial Differential Equations


Book Description

​In this book the author presents a self-contained account of Harnack inequalities and applications for the semigroup of solutions to stochastic partial and delayed differential equations. Since the semigroup refers to Fokker-Planck equations on infinite-dimensional spaces, the Harnack inequalities the author investigates are dimension-free. This is an essentially different point from the above mentioned classical Harnack inequalities. Moreover, the main tool in the study is a new coupling method (called coupling by change of measures) rather than the usual maximum principle in the current literature.







Probability Inequalities in Multivariate Distributions


Book Description

Probability Inequalities in Multivariate Distributions is a comprehensive treatment of probability inequalities in multivariate distributions, balancing the treatment between theory and applications. The book is concerned only with those inequalities that are of types T1-T5. The conditions for such inequalities range from very specific to very general. Comprised of eight chapters, this volume begins by presenting a classification of probability inequalities, followed by a discussion on inequalities for multivariate normal distribution as well as their dependence on correlation coefficients. The reader is then introduced to inequalities for other well-known distributions, including the multivariate distributions of t, chi-square, and F; inequalities for a class of symmetric unimodal distributions and for a certain class of random variables that are positively dependent by association or by mixture; and inequalities obtainable through the mathematical tool of majorization and weak majorization. The book also describes some distribution-free inequalities before concluding with an overview of their applications in simultaneous confidence regions, hypothesis testing, multiple decision problems, and reliability and life testing. This monograph is intended for mathematicians, statisticians, students, and those who are primarily interested in inequalities.




Stochastic Differential Equations and Applications


Book Description

Stochastic Differential Equations and Applications, Volume 1 covers the development of the basic theory of stochastic differential equation systems. This volume is divided into nine chapters. Chapters 1 to 5 deal with the basic theory of stochastic differential equations, including discussions of the Markov processes, Brownian motion, and the stochastic integral. Chapter 6 examines the connections between solutions of partial differential equations and stochastic differential equations, while Chapter 7 describes the Girsanov's formula that is useful in the stochastic control theory. Chapters 8 and 9 evaluate the behavior of sample paths of the solution of a stochastic differential system, as time increases to infinity. This book is intended primarily for undergraduate and graduate mathematics students.




Inequalities: Theory of Majorization and Its Applications


Book Description

This book’s first edition has been widely cited by researchers in diverse fields. The following are excerpts from reviews. “Inequalities: Theory of Majorization and its Applications” merits strong praise. It is innovative, coherent, well written and, most importantly, a pleasure to read. ... This work is a valuable resource!” (Mathematical Reviews). “The authors ... present an extremely rich collection of inequalities in a remarkably coherent and unified approach. The book is a major work on inequalities, rich in content and original in organization.” (Siam Review). “The appearance of ... Inequalities in 1979 had a great impact on the mathematical sciences. By showing how a single concept unified a staggering amount of material from widely diverse disciplines–probability, geometry, statistics, operations research, etc.–this work was a revelation to those of us who had been trying to make sense of his own corner of this material.” (Linear Algebra and its Applications). This greatly expanded new edition includes recent research on stochastic, multivariate and group majorization, Lorenz order, and applications in physics and chemistry, in economics and political science, in matrix inequalities, and in probability and statistics. The reference list has almost doubled.




Stochastic Calculus and Financial Applications


Book Description

Stochastic calculus has important applications to mathematical finance. This book will appeal to practitioners and students who want an elementary introduction to these areas. From the reviews: "As the preface says, ‘This is a text with an attitude, and it is designed to reflect, wherever possible and appropriate, a prejudice for the concrete over the abstract’. This is also reflected in the style of writing which is unusually lively for a mathematics book." --ZENTRALBLATT MATH




Introduction To Stochastic Processes


Book Description

The objective of this book is to introduce the elements of stochastic processes in a rather concise manner where we present the two most important parts — Markov chains and stochastic analysis. The readers are led directly to the core of the main topics to be treated in the context. Further details and additional materials are left to a section containing abundant exercises for further reading and studying.In the part on Markov chains, the focus is on the ergodicity. By using the minimal nonnegative solution method, we deal with the recurrence and various types of ergodicity. This is done step by step, from finite state spaces to denumerable state spaces, and from discrete time to continuous time. The methods of proofs adopt modern techniques, such as coupling and duality methods. Some very new results are included, such as the estimate of the spectral gap. The structure and proofs in the first part are rather different from other existing textbooks on Markov chains.In the part on stochastic analysis, we cover the martingale theory and Brownian motions, the stochastic integral and stochastic differential equations with emphasis on one dimension, and the multidimensional stochastic integral and stochastic equation based on semimartingales. We introduce three important topics here: the Feynman-Kac formula, random time transform and Girsanov transform. As an essential application of the probability theory in classical mathematics, we also deal with the famous Brunn-Minkowski inequality in convex geometry.This book also features modern probability theory that is used in different fields, such as MCMC, or even deterministic areas: convex geometry and number theory. It provides a new and direct routine for students going through the classical Markov chains to the modern stochastic analysis.




Stochastic Orders and Their Applications


Book Description

Stochastic orders and inequalities are being used at an accelerated rate in many diverse areas of probability and statistics. This book provides the first unified, systematic, and accessible treatment of stochasticorders, addressing the growing importance of these orders with the presentation of numerous results that illustrate their usefulness and applicability. Ten insightful chapters emphasize the applications by specialists in probability and statistics, economics, operations research, and reliability theory. Applications include multivariate variability, epidemics, comparisons of risk and risk aversion, scheduling, and systems reliability theory.




Stochastic Analysis and Applications to Finance


Book Description

This volume is a collection of solicited and refereed articles from distinguished researchers across the field of stochastic analysis and its application to finance. The articles represent new directions and newest developments in this exciting and fast growing area. The covered topics range from Markov processes, backward stochastic differential equations, stochastic partial differential equations, stochastic control, potential theory, functional inequalities, optimal stopping, portfolio selection, to risk measure and risk theory. It will be a very useful book for young researchers who want to learn about the research directions in the area, as well as experienced researchers who want to know about the latest developments in the area of stochastic analysis and mathematical finance. Sample Chapter(s). Editorial Foreword (58 KB). Chapter 1: Non-Linear Evolution Equations Driven by Rough Paths (399 KB). Contents: Non-Linear Evolution Equations Driven by Rough Paths (Thomas Cass, Zhongmin Qian and Jan Tudor); Optimal Stopping Times with Different Information Levels and with Time Uncertainty (Arijit Chakrabarty and Xin Guo); Finite Horizon Optimal Investment and Consumption with CARA Utility and Proportional Transaction Costs (Yingshan Chen, Min Dai and Kun Zhao); MUniform Integrability of Exponential Martingales and Spectral Bounds of Non-Local Feynman-Kac Semigroups (Zhen-Qing Chen); Continuous-Time Mean-Variance Portfolio Selection with Finite Transactions (Xiangyu Cui, Jianjun Gao and Duan Li); Quantifying Model Uncertainties in the Space of Probability Measures (J Duan, T Gao and G He); A PDE Approach to Multivariate Risk Theory (Robert J Elliott, Tak Kuen Siu and Hailiang Yang); Stochastic Analysis on Loop Groups (Shizan Fang); Existence and Stability of Measure Solutions for BSDE with Generators of Quadratic Growth (Alexander Fromm, Peter Imkeller and Jianing Zhang); Convex Capital Requirements for Large Portfolios (Hans FAllmer and Thomas Knispel); The Mixed Equilibrium of Insider Trading in the Market with Rational Expected Price (Fuzhou Gong and Hong Liu); Some Results on Backward Stochastic Differential Equations Driven by Fractional Brownian Motions (Yaozhong Hu, Daniel Ocone and Jian Song); Potential Theory of Subordinate Brownian Motions Revisited (Panki Kim, Renming Song and Zoran Vondraiek); Research on Social Causes of the Financial Crisis (Steven Kou); Wick Formulas and Inequalities for the Quaternion Gaussian and -Permanental Variables (Wenbo V Li and Ang Wei); Further Study on Web Markov Skeleton Processes (Yuting Liu, Zhi-Ming Ma and Chuan Zhou); MLE of Parameters in the Drifted Brownian Motion and Its Error (Lemee Nakamura and Weian Zheng); Optimal Partial Information Control of SPDEs with Delay and Time-Advanced Backward SPDEs (Bernt yksendal, Agn s Sulem and Tusheng Zhang); Simulation of Diversified Portfolios in Continuous Financial Markets (Eckhard Platen and Renata Rendek); Coupling and Applications (Feng-Yu Wang); SDEs and a Generalised Burgers Equation (Jiang-Lun Wu and Wei Yang); Mean-Variance Hedging in the Discontinuous Case (Jianming Xia). Readership: Graduates and researchers in stochatic analysis and mathematical finance.