Stochastic Modelling of Electricity and Related Markets


Book Description

The markets for electricity, gas and temperature have distinctive features, which provide the focus for countless studies. For instance, electricity and gas prices may soar several magnitudes above their normal levels within a short time due to imbalances in supply and demand, yielding what is known as spikes in the spot prices. The markets are also largely influenced by seasons, since power demand for heating and cooling varies over the year. The incompleteness of the markets, due to nonstorability of electricity and temperature as well as limited storage capacity of gas, makes spot-forward hedging impossible. Moreover, futures contracts are typically settled over a time period rather than at a fixed date. All these aspects of the markets create new challenges when analyzing price dynamics of spot, futures and other derivatives. This book provides a concise and rigorous treatment on the stochastic modeling of energy markets. OrnsteinOCoUhlenbeck processes are described as the basic modeling tool for spot price dynamics, where innovations are driven by time-inhomogeneous jump processes. Temperature futures are studied based on a continuous higher-order autoregressive model for the temperature dynamics. The theory presented here pays special attention to the seasonality of volatility and the Samuelson effect. Empirical studies using data from electricity, temperature and gas markets are given to link theory to practice. Sample Chapter(s). A Survey of Electricity and Related Markets (331 KB). Contents: A Survey of Electricity and Related Markets; Stochastic Analysis for Independent Increment Processes; Stochastic Models for the Energy Spot Price Dynamics; Pricing of Forwards and Swaps Based on the Spot Price; Applications to the Gas Markets; Modeling Forwards and Swaps Using the HeathOCoJarrowOCoMorton Approach; Constructing Smooth Forward Curves in Electricity Markets; Modeling of the Electricity Futures Market; Pricing and Hedging of Energy Options; Analysis of Temperature Derivatives. Readership: Researchers in energy and commodity markets, and mathematical finance.




Stochastic Modeling Of Electricity And Related Markets


Book Description

The markets for electricity, gas and temperature have distinctive features, which provide the focus for countless studies. For instance, electricity and gas prices may soar several magnitudes above their normal levels within a short time due to imbalances in supply and demand, yielding what is known as spikes in the spot prices. The markets are also largely influenced by seasons, since power demand for heating and cooling varies over the year. The incompleteness of the markets, due to nonstorability of electricity and temperature as well as limited storage capacity of gas, makes spot-forward hedging impossible. Moreover, futures contracts are typically settled over a time period rather than at a fixed date. All these aspects of the markets create new challenges when analyzing price dynamics of spot, futures and other derivatives.This book provides a concise and rigorous treatment on the stochastic modeling of energy markets. Ornstein-Uhlenbeck processes are described as the basic modeling tool for spot price dynamics, where innovations are driven by time-inhomogeneous jump processes. Temperature futures are studied based on a continuous higher-order autoregressive model for the temperature dynamics. The theory presented here pays special attention to the seasonality of volatility and the Samuelson effect. Empirical studies using data from electricity, temperature and gas markets are given to link theory to practice.




Mathematical Modelling of Contemporary Electricity Markets


Book Description

Mathematical Modelling of Contemporary Electricity Markets reviews major methodologies and tools to accurately analyze and forecast contemporary electricity markets in a ways that is ideal for practitioner and academic audiences. Approaches include optimization, neural networks, genetic algorithms, co-optimization, econometrics, E3 models and energy system models. The work examines how new challenges affect power market modeling, including discussions of stochastic renewables, price volatility, dynamic participation of demand, integration of storage and electric vehicles, interdependence with other commodity markets and the evolution of policy developments (market coupling processes, security of supply). Coverage addresses all major forms of electricity markets: day-ahead, forward, intraday, balancing, and capacity. - Provides a diverse body of established techniques suitable for modeling any major aspect of electricity markets - Familiarizes energy experts with the quantitative skills needed in competitive electricity markets - Reviews market risk for energy investment decisions by stressing the multi-dimensionality of electricity markets




An Introduction to Stochastic Modeling


Book Description

An Introduction to Stochastic Modeling provides information pertinent to the standard concepts and methods of stochastic modeling. This book presents the rich diversity of applications of stochastic processes in the sciences. Organized into nine chapters, this book begins with an overview of diverse types of stochastic models, which predicts a set of possible outcomes weighed by their likelihoods or probabilities. This text then provides exercises in the applications of simple stochastic analysis to appropriate problems. Other chapters consider the study of general functions of independent, identically distributed, nonnegative random variables representing the successive intervals between renewals. This book discusses as well the numerous examples of Markov branching processes that arise naturally in various scientific disciplines. The final chapter deals with queueing models, which aid the design process by predicting system performance. This book is a valuable resource for students of engineering and management science. Engineers will also find this book useful.




Handbook Of Energy Finance: Theories, Practices And Simulations


Book Description

Modeling the dynamics of energy markets has become a challenging task. The intensification of their financialization since 2004 had made them more complex but also more integrated with other tradable asset classes. More importantly, their large and frequent fluctuations in terms of both prices and volatility, particularly in the aftermath of the global financial crisis 2008-2009, posit difficulties for modeling and forecasting energy price behavior and are primary sources of concerns for macroeconomic stability and general economic performance.This handbook aims to advance the debate on the theories and practices of quantitative energy finance while shedding light on innovative results and technical methods applied to energy markets. Its primary focus is on the recent development and applications of mathematical and quantitative approaches for a better understanding of the stochastic processes that drive energy market movements. The handbook is designed for not only graduate students and researchers but also practitioners and policymakers.




Integrating Renewables in Electricity Markets


Book Description

This addition to the ISOR series addresses the analytics of the operations of electric energy systems with increasing penetration of stochastic renewable production facilities, such as wind- and solar-based generation units. As stochastic renewable production units become ubiquitous throughout electric energy systems, an increasing level of flexible backup provided by non-stochastic units and other system agents is needed if supply security and quality are to be maintained. Within the context above, this book provides up-to-date analytical tools to address challenging operational problems such as: • The modeling and forecasting of stochastic renewable power production. • The characterization of the impact of renewable production on market outcomes. • The clearing of electricity markets with high penetration of stochastic renewable units. • The development of mechanisms to counteract the variability and unpredictability of stochastic renewable units so that supply security is not at risk. • The trading of the electric energy produced by stochastic renewable producers. • The association of a number of electricity production facilities, stochastic and others, to increase their competitive edge in the electricity market. • The development of procedures to enable demand response and to facilitate the integration of stochastic renewable units. This book is written in a modular and tutorial manner and includes many illustrative examples to facilitate its comprehension. It is intended for advanced undergraduate and graduate students in the fields of electric energy systems, applied mathematics and economics. Practitioners in the electric energy sector will benefit as well from the concepts and techniques explained in this book.




Modeling and Forecasting Electricity Loads and Prices


Book Description

This book offers an in-depth and up-to-date review of different statistical tools that can be used to analyze and forecast the dynamics of two crucial for every energy company processes—electricity prices and loads. It provides coverage of seasonal decomposition, mean reversion, heavy-tailed distributions, exponential smoothing, spike preprocessing, autoregressive time series including models with exogenous variables and heteroskedastic (GARCH) components, regime-switching models, interval forecasts, jump-diffusion models, derivatives pricing and the market price of risk. Modeling and Forecasting Electricity Loads and Prices is packaged with a CD containing both the data and detailed examples of implementation of different techniques in Matlab, with additional examples in SAS. A reader can retrace all the intermediate steps of a practical implementation of a model and test his understanding of the method and correctness of the computer code using the same input data. The book will be of particular interest to the quants employed by the utilities, independent power generators and marketers, energy trading desks of the hedge funds and financial institutions, and the executives attending courses designed to help them to brush up on their technical skills. The text will be also of use to graduate students in electrical engineering, econometrics and finance wanting to get a grip on advanced statistical tools applied in this hot area. In fact, there are sixteen Case Studies in the book making it a self-contained tutorial to electricity load and price modeling and forecasting.




Decision Making Under Uncertainty in Electricity Markets


Book Description

Decision Making Under Uncertainty in Electricity Markets provides models and procedures to be used by electricity market agents to make informed decisions under uncertainty. These procedures rely on well established stochastic programming models, which make them efficient and robust. Particularly, these techniques allow electricity producers to derive offering strategies for the pool and contracting decisions in the futures market. Retailers use these techniques to derive selling prices to clients and energy procurement strategies through the pool, the futures market and bilateral contracting. Using the proposed models, consumers can derive the best energy procurement strategies using the available trading floors. The market operator can use the techniques proposed in this book to clear simultaneously energy and reserve markets promoting efficiency and equity. The techniques described in this book are of interest for professionals working on energy markets, and for graduate students in power engineering, applied mathematics, applied economics, and operations research.




Stochastic Models for Prices Dynamics in Energy and Commodity Markets


Book Description

This monograph presents a theory for random field models in time and space, viewed as stochastic processes with values in a Hilbert space, to model the stochastic dynamics of forward and futures prices in energy, power, and commodity markets. In this book, the well-known Heath–Jarrow–Morton approach from interest rate theory is adopted and extended into an infinite-dimensional framework, allowing for flexible modeling of price stochasticity across time and along the term structure curve. Various models are introduced based on stochastic partial differential equations with infinite-dimensional Lévy processes as noise drivers, emphasizing random fields described by low-dimensional parametric covariance functions instead of classical high-dimensional factor models. The Filipović space, a separable Hilbert space of Sobolev type, is found to be a convenient state space for the dynamics of forward and futures term structures. The monograph provides a classification of important operators in this space, covering covariance operators and the stochastic modeling of volatility term structures, including the Samuelson effect. Fourier methods are employed to price many derivatives of interest in energy, power, and commodity markets, and sensitivity 'delta' expressions can be derived. Additionally, the monograph covers forward curve smoothing, the connection between forwards with fixed delivery and delivery period, as well as the classical theory of forward and futures pricing. This monograph will appeal to researchers and graduate students interested in mathematical finance and stochastic analysis applied in the challenging markets of energy, power, and commodities. Practitioners seeking sophisticated yet flexible and analytically tractable risk models will also find it valuable.




Mathematical Modeling, Simulation and Optimization for Power Engineering and Management


Book Description

This edited monograph offers a summary of future mathematical methods supporting the recent energy sector transformation. It collects current contributions on innovative methods and algorithms. Advances in mathematical techniques and scientific computing methods are presented centering around economic aspects, technical realization and large-scale networks. Over twenty authors focus on the mathematical modeling of such future systems with careful analysis of desired properties and arising scales. Numerical investigations include efficient methods for the simulation of possibly large-scale interconnected energy systems and modern techniques for optimization purposes to guarantee stable and reliable future operations. The target audience comprises research scientists, researchers in the R&D field, and practitioners. Since the book highlights possible future research directions, graduate students in the field of mathematical modeling or electrical engineering may also benefit strongly.