Stochastic Models in Queueing Theory


Book Description

This is a graduate level textbook that covers the fundamental topics in queuing theory. The book has a broad coverage of methods to calculate important probabilities, and gives attention to proving the general theorems. It includes many recent topics, such as server-vacation models, diffusion approximations and optimal operating policies, and more about bulk-arrival and bull-service models than other general texts. - Current, clear and comprehensive coverage - A wealth of interesting and relevant examples and exercises to reinforce concepts - Reference lists provided after each chapter for further investigation







Stochastic Processes in Queueing Theory


Book Description

The object of queueing theory (or the theory of mass service) is the investigation of stochastic processes of a special form which are called queueing (or service) processes in this book. Two approaches to the definition of these processes are possible depending on the direction of investigation. In accordance with this fact, the exposition of the subject can be broken up into two self-contained parts. The first of these forms the content of this monograph. . The definition of the queueing processes (systems) to be used here is dose to the traditional one and is connected with the introduction of so-called governing random sequences. We will introduce algorithms which describe the governing of a system with the aid of such sequences. Such a definition inevitably becomes rather qualitative since under these conditions a completely formal construction of a stochastic process uniquely describing the evolution of the system would require introduction of a complicated phase space not to mention the difficulties of giving the distribution of such a process on this phase space.




Stochastic Storage Processes


Book Description

This book is based on a course I have taught at Cornell University since 1965. The primary topic of this course was queueing theory, but related topics such as inventories, insurance risk, and dams were also included. As a text I used my earlier book, Queues and Inventories (John Wiley, New York, 1965). Over the years the emphasis in this course shifted from detailed analysis of probability models to the study of stochastic processes that arise from them, and the subtitle of the text, "A Study of Their Basic Stochastic Processes," became a more appropriate description of the course. My own research into the fluctuation theory for U:vy processes provided a new perspective on the topics discussed, and enabled me to reorganize the material. The lecture notes used for the course went through several versions, and the final version became this book. A detailed description of my approach will be found in the Introduction. I have not attempted to give credit to authors of individual results. Readers interested in the historical literature should consult the Selected Bibliography given at the end of the Introduction. The original work in this area is presented here with simpler proofs that make full use of the special features of the underlying stochastic processes. The same approach makes it possible to provide several new results. Thanks are due to Kathy King for her excellent typing of the manuscript.




An Introduction to Queueing Theory


Book Description

This introductory textbook is designed for a one-semester course on queueing theory that does not require a course on stochastic processes as a prerequisite. By integrating the necessary background on stochastic processes with the analysis of models, the work provides a sound foundational introduction to the modeling and analysis of queueing systems for a broad interdisciplinary audience of students in mathematics, statistics, and applied disciplines such as computer science, operations research, and engineering. This edition includes additional topics in methodology and applications. Key features: • An introductory chapter including a historical account of the growth of queueing theory in more than 100 years. • A modeling-based approach with emphasis on identification of models • Rigorous treatment of the foundations of basic models commonly used in applications with appropriate references for advanced topics. • A chapter on matrix-analytic method as an alternative to the traditional methods of analysis of queueing systems. • A comprehensive treatment of statistical inference for queueing systems. • Modeling exercises and review exercises when appropriate. The second edition of An Introduction of Queueing Theory may be used as a textbook by first-year graduate students in fields such as computer science, operations research, industrial and systems engineering, as well as related fields such as manufacturing and communications engineering. Upper-level undergraduate students in mathematics, statistics, and engineering may also use the book in an introductory course on queueing theory. With its rigorous coverage of basic material and extensive bibliography of the queueing literature, the work may also be useful to applied scientists and practitioners as a self-study reference for applications and further research. "...This book has brought a freshness and novelty as it deals mainly with modeling and analysis in applications as well as with statistical inference for queueing problems. With his 40 years of valuable experience in teaching and high level research in this subject area, Professor Bhat has been able to achieve what he aimed: to make [the work] somewhat different in content and approach from other books." - Assam Statistical Review of the first edition




Stochastic Modeling and the Theory of Queues


Book Description

An integrated and up-to-date treatment of applied stochastic processes and queueing theory, with an emphasis on time-averages and long-run behavior. Theory demonstrates practical effects, such as priorities, pooling of queues, and bottlenecks. Appropriate for senior/graduate courses in queueing theory in Operations Research, Computer Science, Statistics, or Industrial Engineering departments. (vs. Ross, Karlin, Kleinrock, Heyman)




Stochastic Networks and Queues


Book Description

Queues and stochastic networks are analyzed in this book with purely probabilistic methods. The purpose of these lectures is to show that general results from Markov processes, martingales or ergodic theory can be used directly to study the corresponding stochastic processes. Recent developments have shown that, instead of having ad-hoc methods, a better understanding of fundamental results on stochastic processes is crucial to study the complex behavior of stochastic networks. In this book, various aspects of these stochastic models are investigated in depth in an elementary way: Existence of equilibrium, characterization of stationary regimes, transient behaviors (rare events, hitting times) and critical regimes, etc. A simple presentation of stationary point processes and Palm measures is given. Scaling methods and functional limit theorems are a major theme of this book. In particular, a complete chapter is devoted to fluid limits of Markov processes.




Elements of Queueing Theory


Book Description

This fundamental exposition of queueing theory, written by leading researchers, answers the need for a mathematically sound reference work on the subject and has become the standard reference. The thoroughly revised second edition contains a substantial number of exercises and their solutions, which makes the book suitable as a textbook.




An Introduction to Queueing Theory


Book Description

The present textbook contains the recordsof a two–semester course on que- ing theory, including an introduction to matrix–analytic methods. This course comprises four hours oflectures and two hours of exercises per week andhas been taughtattheUniversity of Trier, Germany, for about ten years in - quence. The course is directed to last year undergraduate and?rst year gr- uate students of applied probability and computer science, who have already completed an introduction to probability theory. Its purpose is to present - terial that is close enough to concrete queueing models and their applications, while providing a sound mathematical foundation for the analysis of these. Thus the goal of the present book is two–fold. On the one hand, students who are mainly interested in applications easily feel bored by elaborate mathematical questions in the theory of stochastic processes. The presentation of the mathematical foundations in our courses is chosen to cover only the necessary results, which are needed for a solid foundation of the methods of queueing analysis. Further, students oriented - wards applications expect to have a justi?cation for their mathematical efforts in terms of immediate use in queueing analysis. This is the main reason why we have decided to introduce new mathematical concepts only when they will be used in the immediate sequel. On the other hand, students of applied probability do not want any heur- tic derivations just for the sake of yielding fast results for the model at hand.




Sample-Path Analysis of Queueing Systems


Book Description

Sample-Path Analysis of Queueing Systems uses a deterministic (sample-path) approach to analyze stochastic systems, primarily queueing systems and more general input-output systems. Among other topics of interest it deals with establishing fundamental relations between asymptotic frequencies and averages, pathwise stability, and insensitivity. These results are utilized to establish useful performance measures. The intuitive deterministic approach of this book will give researchers, teachers, practitioners, and students better insights into many results in queueing theory. The simplicity and intuitive appeal of the arguments will make these results more accessible, with no sacrifice of mathematical rigor. Recent topics such as pathwise stability are also covered in this context. The book consistently takes the point of view of focusing on one sample path of a stochastic process. Hence, it is devoted to providing pure sample-path arguments. With this approach it is possible to separate the issue of the validity of a relationship from issues of existence of limits and/or construction of stationary framework. Generally, in many cases of interest in queueing theory, relations hold, assuming limits exist, and the proofs are elementary and intuitive. In other cases, proofs of the existence of limits will require the heavy machinery of stochastic processes. The authors feel that sample-path analysis can be best used to provide general results that are independent of stochastic assumptions, complemented by use of probabilistic arguments to carry out a more detailed analysis. This book focuses on the first part of the picture. It does however, provide numerous examples that invoke stochastic assumptions, which typically are presented at the ends of the chapters.