Stochastic Models In The Life Sciences And Their Methods Of Analysis


Book Description

'… the volume is impressively accessible. The result is a book that is valuable and approachable for biologists at all levels, including those interested in deepening their skills in mathematical modeling and those who seek an overview to aid them in communicating with collaborators in mathematics and statistics. The former group of readers may especially appreciate the first chapter, an introduction to key concepts in probability, and the set of ten assignments provided as an appendix.'CHOICEBiological processes are evolutionary in nature and often evolve in a noisy environment or in the presence of uncertainty. Such evolving phenomena are necessarily modeled mathematically by stochastic differential/difference equations (SDE), which have been recognized as essential for a true understanding of many biological phenomena. Yet, there is a dearth of teaching material in this area for interested students and researchers, notwithstanding the addition of some recent texts on stochastic modelling in the life sciences. The reason may well be the demanding mathematical pre-requisites needed to 'solve' SDE.A principal goal of this volume is to provide a working knowledge of SDE based on the premise that familiarity with the basic elements of a stochastic calculus for random processes is unavoidable. Through some SDE models of familiar biological phenomena, we show how stochastic methods developed for other areas of science and engineering are also useful in the life sciences. In the process, the volume introduces to biologists a collection of analytical and computational methods for research and applications in this emerging area of life science. The additions broaden the available tools for SDE models for biologists that have been limited by and large to stochastic simulations.




Stochastic Models in Biology


Book Description

Stochastic Models in Biology describes the usefulness of the theory of stochastic process in studying biological phenomena. The book describes analysis of biological systems and experiments though probabilistic models rather than deterministic methods. The text reviews the mathematical analyses for modeling different biological systems such as the random processes continuous in time and discrete in state space. The book also discusses population growth and extinction through Malthus' law and the work of MacArthur and Wilson. The text then explains the dynamics of a population of interacting species. The book also addresses population genetics under systematic evolutionary pressures known as deterministic equations and genetic changes in a finite population known as stochastic equations. The text then turns to stochastic modeling of biological systems at the molecular level, particularly the kinetics of biochemical reactions. The book also presents various useful equations such as the differential equation for generating functions for birth and death processes. The text can prove valuable for biochemists, cellular biologists, and researchers in the medical and chemical field who are tasked to perform data analysis.







Mathematical Modeling for the Life Sciences


Book Description

Provides a wide range of mathematical models currently used in the life sciences Each model is thoroughly explained and illustrated by example Includes three appendices to allow for independent reading




Stochastic Modelling of Social Processes


Book Description

Stochastic Modelling of Social Processes provides information pertinent to the development in the field of stochastic modeling and its applications in the social sciences. This book demonstrates that stochastic models can fulfill the goals of explanation and prediction. Organized into nine chapters, this book begins with an overview of stochastic models that fulfill normative, predictive, and structural–analytic roles with the aid of the theory of probability. This text then examines the study of labor market structures using analysis of job and career mobility, which is one of the approaches taken by sociologists in research on the labor market. Other chapters consider the characteristic trends and patterns from data on divorces. This book discusses as well the two approaches of stochastic modeling of social processes, namely competing risk models and semi-Markov processes. The final chapter deals with the practical application of regression models of survival data. This book is a valuable resource for social scientists and statisticians.




An Introduction to Stochastic Modeling


Book Description

An Introduction to Stochastic Modeling provides information pertinent to the standard concepts and methods of stochastic modeling. This book presents the rich diversity of applications of stochastic processes in the sciences. Organized into nine chapters, this book begins with an overview of diverse types of stochastic models, which predicts a set of possible outcomes weighed by their likelihoods or probabilities. This text then provides exercises in the applications of simple stochastic analysis to appropriate problems. Other chapters consider the study of general functions of independent, identically distributed, nonnegative random variables representing the successive intervals between renewals. This book discusses as well the numerous examples of Markov branching processes that arise naturally in various scientific disciplines. The final chapter deals with queueing models, which aid the design process by predicting system performance. This book is a valuable resource for students of engineering and management science. Engineers will also find this book useful.




Stochastic Models, Statistics and Their Applications


Book Description

This volume presents the latest advances and trends in stochastic models and related statistical procedures. Selected peer-reviewed contributions focus on statistical inference, quality control, change-point analysis and detection, empirical processes, time series analysis, survival analysis and reliability, statistics for stochastic processes, big data in technology and the sciences, statistical genetics, experiment design, and stochastic models in engineering. Stochastic models and related statistical procedures play an important part in furthering our understanding of the challenging problems currently arising in areas of application such as the natural sciences, information technology, engineering, image analysis, genetics, energy and finance, to name but a few. This collection arises from the 12th Workshop on Stochastic Models, Statistics and Their Applications, Wroclaw, Poland.




Stochastic Models With Applications To Genetics, Cancers, Aids And Other Biomedical Systems


Book Description

This book presents a systematic treatment of Markov chains, diffusion processes and state space models, as well as alternative approaches to Markov chains through stochastic difference equations and stochastic differential equations. It illustrates how these processes and approaches are applied to many problems in genetics, carcinogenesis, AIDS epidemiology and other biomedical systems.One feature of the book is that it describes the basic MCMC (Markov chain and Monte Carlo) procedures and illustrates how to use the Gibbs sampling method and the multilevel Gibbs sampling method to solve many problems in genetics, carcinogenesis, AIDS and other biomedical systems.As another feature, the book develops many state space models for many genetic problems, carcinogenesis, AIDS epidemiology and HIV pathogenesis. It shows in detail how to use the multilevel Gibbs sampling method to estimate (or predict) simultaneously the state variables and the unknown parameters in cancer chemotherapy, carcinogenesis, AIDS epidemiology and HIV pathogenesis. As a matter of fact, this book is the first to develop many state space models for many genetic problems, carcinogenesis and other biomedical problems.




Deterministic Versus Stochastic Modelling in Biochemistry and Systems Biology


Book Description

Stochastic kinetic methods are currently considered to be the most realistic and elegant means of representing and simulating the dynamics of biochemical and biological networks. Deterministic versus stochastic modelling in biochemistry and systems biology introduces and critically reviews the deterministic and stochastic foundations of biochemical kinetics, covering applied stochastic process theory for application in the field of modelling and simulation of biological processes at the molecular scale. Following an overview of deterministic chemical kinetics and the stochastic approach to biochemical kinetics, the book goes onto discuss the specifics of stochastic simulation algorithms, modelling in systems biology and the structure of biochemical models. Later chapters cover reaction-diffusion systems, and provide an analysis of the Kinfer and BlenX software systems. The final chapter looks at simulation of ecodynamics and food web dynamics. Introduces mathematical concepts and formalisms of deterministic and stochastic modelling through clear and simple examples Presents recently developed discrete stochastic formalisms for modelling biological systems and processes Describes and applies stochastic simulation algorithms to implement a stochastic formulation of biochemical and biological kinetics




Stochastic Models in Reliability Engineering


Book Description

This book is a collective work by many leading scientists, analysts, mathematicians, and engineers who have been working at the front end of reliability science and engineering. The book covers conventional and contemporary topics in reliability science, all of which have seen extended research activities in recent years. The methods presented in this book are real-world examples that demonstrate improvements in essential reliability and availability for industrial equipment such as medical magnetic resonance imaging, power systems, traction drives for a search and rescue helicopter, and air conditioning systems. The book presents real case studies of redundant multi-state air conditioning systems for chemical laboratories and covers assessments of reliability and fault tolerance and availability calculations. Conventional and contemporary topics in reliability engineering are discussed, including degradation, networks, and dynamic reliability, resilience, and multi-state systems, all of which are relatively new topics to the field. The book is aimed at engineers and scientists, as well as postgraduate students involved in reliability design, analysis, and experiments and applied probability and statistics.