Stochastic Models of Neural Networks


Book Description




Advanced Models of Neural Networks


Book Description

This book provides a complete study on neural structures exhibiting nonlinear and stochastic dynamics, elaborating on neural dynamics by introducing advanced models of neural networks. It overviews the main findings in the modelling of neural dynamics in terms of electrical circuits and examines their stability properties with the use of dynamical systems theory. It is suitable for researchers and postgraduate students engaged with neural networks and dynamical systems theory.







Forecasting: principles and practice


Book Description

Forecasting is required in many situations. Stocking an inventory may require forecasts of demand months in advance. Telecommunication routing requires traffic forecasts a few minutes ahead. Whatever the circumstances or time horizons involved, forecasting is an important aid in effective and efficient planning. This textbook provides a comprehensive introduction to forecasting methods and presents enough information about each method for readers to use them sensibly.




Stochastic Neuron Models


Book Description

This book describes a large number of open problems in the theory of stochastic neural systems, with the aim of enticing probabilists to work on them. This includes problems arising from stochastic models of individual neurons as well as those arising from stochastic models of the activities of small and large networks of interconnected neurons. The necessary neuroscience background to these problems is outlined within the text, so readers can grasp the context in which they arise. This book will be useful for graduate students and instructors providing material and references for applying probability to stochastic neuron modeling. Methods and results are presented, but the emphasis is on questions where additional stochastic analysis may contribute neuroscience insight. An extensive bibliography is included. Dr. Priscilla E. Greenwood is a Professor Emerita in the Department of Mathematics at the University of British Columbia. Dr. Lawrence M. Ward is a Professor in the Department of Psychology and the Brain Research Centre at the University of British Columbia.







Neural Networks


Book Description

Neural Networks presents concepts of neural-network models and techniques of parallel distributed processing in a three-step approach: - A brief overview of the neural structure of the brain and the history of neural-network modeling introduces to associative memory, preceptrons, feature-sensitive networks, learning strategies, and practical applications. - The second part covers subjects like statistical physics of spin glasses, the mean-field theory of the Hopfield model, and the "space of interactions" approach to the storage capacity of neural networks. - The final part discusses nine programs with practical demonstrations of neural-network models. The software and source code in C are on a 3 1/2" MS-DOS diskette can be run with Microsoft, Borland, Turbo-C, or compatible compilers.




Artificial Neural Network Modelling


Book Description

This book covers theoretical aspects as well as recent innovative applications of Artificial Neural networks (ANNs) in natural, environmental, biological, social, industrial and automated systems. It presents recent results of ANNs in modelling small, large and complex systems under three categories, namely, 1) Networks, Structure Optimisation, Robustness and Stochasticity 2) Advances in Modelling Biological and Environmental Systems and 3) Advances in Modelling Social and Economic Systems. The book aims at serving undergraduates, postgraduates and researchers in ANN computational modelling.




Stochastic Modelling of Reaction–Diffusion Processes


Book Description

This practical introduction to stochastic reaction-diffusion modelling is based on courses taught at the University of Oxford. The authors discuss the essence of mathematical methods which appear (under different names) in a number of interdisciplinary scientific fields bridging mathematics and computations with biology and chemistry. The book can be used both for self-study and as a supporting text for advanced undergraduate or beginning graduate-level courses in applied mathematics. New mathematical approaches are explained using simple examples of biological models, which range in size from simulations of small biomolecules to groups of animals. The book starts with stochastic modelling of chemical reactions, introducing stochastic simulation algorithms and mathematical methods for analysis of stochastic models. Different stochastic spatio-temporal models are then studied, including models of diffusion and stochastic reaction-diffusion modelling. The methods covered include molecular dynamics, Brownian dynamics, velocity jump processes and compartment-based (lattice-based) models.




Neuronal Stochastic Variability: Influences on Spiking Dynamics and Network Activity


Book Description

Stochastic fluctuations are intrinsic to and unavoidable at every stage of neural dynamics. For example, ion channels undergo random conformational changes, neurotransmitter release at synapses is discrete and probabilistic, and neural networks are embedded in spontaneous background activity. The mathematical and computational tool sets contributing to our understanding of stochastic neural dynamics have expanded rapidly in recent years. New theories have emerged detailing the dynamics and computational power of the balanced state in recurrent networks. At the cellular level, novel stochastic extensions to the classical Hodgkin-Huxley model have enlarged our understanding of neuronal dynamics and action potential initiation. Analytical methods have been developed that allow for the calculation of the firing statistics of simplified phenomenological integrate-and-fire models, taking into account adaptation currents or temporal correlations of the noise. This Research Topic is focused on identified physiological/internal noise sources and mechanisms. By "internal", we mean variability that is generated by intrinsic biophysical processes. This includes noise at a range of scales, from ion channels to synapses to neurons to networks. The contributions in this Research Topic introduce innovative mathematical analysis and/or computational methods that relate to empirical measures of neural activity and illuminate the functional role of intrinsic noise in the brain.