Stochastic Optimization for Distributed Energy Resources in Smart Grids


Book Description

This brief focuses on stochastic energy optimization for distributed energy resources in smart grids. Along with a review of drivers and recent developments towards distributed energy resources, this brief presents research challenges of integrating millions of distributed energy resources into the grid. The brief then proposes a novel three-level hierarchical architecture for effectively integrating distributed energy resources into smart grids. Under the proposed hierarchical architecture, distributed energy resource management algorithms at the three levels (i.e., smart home, smart neighborhood, and smart microgrid) are developed in this brief based on stochastic optimization that can handle the involved uncertainties in the system.




Operation of Distributed Energy Resources in Smart Distribution Networks


Book Description

Operation of Distributed Energy Resources in Smart Distribution Networks defines the barriers and challenges of smart distribution networks, ultimately proposing optimal solutions for addressing them. The book considers their use as an important part of future electrical power systems and their ability to improve the local flexibility and reliability of electrical systems. It carefully defines the concept as a radial network with a cluster of distributed energy generations, various types of loads, and energy storage systems. In addition, the book details how the huge penetration of distributed energy resources and the intermittent nature of renewable generations may cause system problems. Readers will find this to be an important resource that analyzes and introduces the features and problems of smart distribution networks from different aspects. - Integrates different types of elements, including electrical vehicles, demand response programs, and various renewable energy sources in distribution networks - Proposes optimal operational models for the short-term performance and scheduling of a distribution network - Discusses the uncertainties of renewable resources and intermittent load in the decision-making process for distribution networks




Distributed Energy Resources Management 2018


Book Description

The Special Issue Distributed Energy Resources Management 2018 includes 13 papers, and is a continuation of the Special Issue Distributed Energy Resources Management. The success of the previous edition shows the unquestionable relevance of distributed energy resources in the operation of power and energy systems at both the distribution level and at the wider power system level. Improving the management of distributed energy resources makes it possible to accommodate the higher penetration of intermittent distributed generation and electric vehicle charging. Demand response programs, namely the ones with a distributed nature, allow the consumers to contribute to the increased system efficiency while receiving benefits. This book addresses the management of distributed energy resources, with a focus on methods and techniques to achieve an optimized operation, in order to aggregate the resources namely in the scope of virtual power players and other types of aggregators, and to remunerate them. The integration of distributed resources in electricity markets is also addressed as an enabler for their increased and efficient use.




Optimizing and Measuring Smart Grid Operation and Control


Book Description

Smart grid (SG), also called intelligent grid, is a modern improvement of the traditional power grid that will revolutionize the way electricity is produced, delivered, and consumed. Studying key concepts such as advanced metering infrastructure, distribution management systems, and energy management systems will support the design of a cost-effective, reliable, and efficient supply system, and will create a real-time bidirectional communication means and information exchange between the consumer and the grid operator of electric power. Optimizing and Measuring Smart Grid Operation and Control is a critical reference source that presents recent research on the operation, control, and optimization of smart grids. Covering topics that include phase measurement units, smart metering, and synchrophasor technologies, this book examines all aspects of modern smart grid measurement and control. It is designed for engineers, researchers, academicians, and students.




Distributed Energy Resources in Microgrids


Book Description

Distributed Energy Resources in Microgrids: Integration, Challenges and Optimization unifies classically unconnected aspects of microgrids by considering them alongside economic analysis and stability testing. In addition, the book presents well-founded mathematical analyses on how to technically and economically optimize microgrids via distributed energy resource integration. Researchers and engineers in the power and energy sector will find this information useful for combined scientific and economical approaches to microgrid integration. Specific sections cover microgrid performance, including key technical elements, such as control design, stability analysis, power quality, reliability and resiliency in microgrid operation. - Addresses the challenges related to the integration of renewable energy resources - Includes examples of control algorithms adopted during integration - Presents detailed methods of optimization to enhance successful integration




Smart Microgrids


Book Description

This book addresses the need to understand the development, use, construction, and operation of smart microgrids (SMG). Covering selected major operations of SMG like dynamic energy management, demand response, and demand dispatch, it describes the design and operational challenges of different microgrids and provides feasible solutions for systems. Smart Micro Grid presents communication technologies and governing standards used in developing communication networks for realizing various smart services and applications in microgrids. An architecture facilitating bidirectional communication for smart distribution/microgrid is brought out covering aspects of its design, development and validation. The book is aimed at graduate, research students and professionals in power, power systems, and power electronics. Features: • Covers a broad overview of the benefits, the design and operation requirements, standards and communication requirements for deploying microgrids in distribution systems. • Explores issues related to planning, expansion, operation, type of microgrids, interaction among microgrid and distribution networks, demand response, and the technical requirements for the communication network. • Discusses current standards and common practices to develop and operate microgrids. • Describes technical issues and requirements for operating microgrids. • Illustrates smart communication architecture and protocols.




Smart Grids


Book Description

The latest edition features a new chapter on implementation and operation of an integrated smart grid with updates to multiple chapters throughout the text. New sections on Internet of things, and how they relate to smart grids and smart cities, have also been added to the book. It describes the impetus for change in the electric utility industry and discusses the business drivers, benefits, and market outlook of the smart grid initiative. The book identifies the technical framework of enabling technologies and smart solutions and describes the role of technology developments and coordinated standards in smart grid, including various initiatives and organizations helping to drive the smart grid effort. With chapters written by leading experts in the field, the text explains how to plan, integrate, implement, and operate a smart grid.




Advanced Approaches, Business Models, and Novel Techniques for Management and Control of Smart Grids


Book Description

The current power system should be renovated to fulfill social and industrial requests and economic advances. Hence, providing economic, green, and sustainable energy are key goals of advanced societies. In order to meet these goals, recent features of smart grid technologies need to have the potential to improve reliability, flexibility, efficiency, and resiliency. This book aims to address the mentioned challenges by introducing advanced approaches, business models, and novel techniques for the management and control of future smart grids.




Energy Systems Transition


Book Description

Energy Systems Transition: Digitalization, Decarbonization, Decentralization, and Democratization provides a thorough multidisciplinary overview of the operation of modern green energy systems and examines the role of 4D energy transition in global decarbonization mitigation efforts for meeting long-term climate goals. Contributions present practical aspects and approaches with evidence from applications to real-world energy systems, offering in-depth technical discussions, case studies, and examples to help readers understand the methods, current challenges, and future directions. A hands-on reference to energy distribution systems, it is suitable for researchers and industry practitioners from different branches of engineering, energy, data science, economics, and operation research.




E-Mobility in Electrical Energy Systems for Sustainability


Book Description

As more and more communities around the world are turning to electric vehicles (EVs) to help the environment and save energy, we face a big challenge. The systems that deliver power to our homes and businesses are having a tough time keeping up, especially with the increasing use of EVs. This challenge is a major issue for the experts in the energy field who are working hard to figure out how to make sure our power systems stay reliable. The main goal for these experts right now is to create a strong, flexible system that can smoothly handle the integration of EVs, making sure the power flows well, the grid stays stable, and the systems remain eco-friendly. E-Mobility in Electrical Energy Systems for Sustainability is a comprehensive guide to navigating the complexities of e-mobility integration. Delving into crucial aspects such as architectural reconfiguration, restoration strategies, power quality control, and regulatory frameworks, the book provides solutions on how to address the challenges posed by the integration of EVs into distribution systems. Its examination of advanced technologies, including communication-enabled EV charging systems, battery management systems, and power grid cybersecurity measures, equips readers with the knowledge needed to start the transformative journey towards sustainable electric transportation. This book is a great resource for those seeking to understand, engage with, and contribute to the landscape of e-mobility integration.