Strangeness Production and Strange V0 & Charged Hadron Correlation in Heavy-ion Collisions


Book Description

In relativistic heavy-ion collisions, experimental evidence indicates that a new form of matter with de-confined quarks and gluons named the Quark-Gluon Plasma(QGP) has been created. The Relativistic Heavy Ion Collider (RHIC) provides a unique opportunity to study the QGP matter. Strange hadron production is believed to be sensitive to parton dynamics in heavy-ion collisions. In particular, the strange quark production rate and its subsequent evolution in the dense partonic medium depend on the beam energy and the net baryon density. The productions of K0s, [Lambda], [Xi], [Omega] at mid-rapidity from Au+Au collisions at the beam energies of 7.7, 11.5, 19.6, 27, and 39GeV from the RHIC Beam Energy Scan Program are measured. We investigate the strangeness enhancement and ratios of anti-baryon to baryon yields as a function of beam energy at RHIC. Nuclear modification factors and ratios of baryon to meson yields are also studied. Implications on collision dynamics due to the increase in the baryon chemical potential at low beam energy and constraints on chemical freeze-out parameters will also be discussed in this thesis. Parity-odd domains are theorized to form inside the QGP and to cause electric charge separation with respect to the reaction plane in the relativistic heavy-ion collisions via the Chiral Magnetic Effect (CME). Such charge separation has been studied at RHIC and LHC via the difference in two particle correlation between the opposite charge and same charge hadrons. The [Lambda](Lambda) and K0s particles are charge-neutral, and are supposed to bear no charge separation effects due to CME. We study the correlation between the neutral particle and charged hadron to investigate background for charged hadron correlation. In addition, the large angular momentum in heavy-ion collisions is predicted to lead to the Chiral Vortical Effect (CVE) which induces a baryon number separation, in analogy with the electric charge separation caused by CME. We carried out a study of [Lambda] - p correlations to search for the CVE. We present measurements of correlations for [Lambda] - h±, K0s - p, [Lambda] - p, in Au+Au collisions at 39GeV and 200GeV, to study the electric charge and baryon number separations across the reaction plane.




Introduction to Relativistic Heavy Ion Physics


Book Description

This book attempts to cover the fascinating field of physics of relativistic heavy ions, mainly from the experimentalist's point of view. After the introductory chapter on quantum chromodynamics, basic properties of atomic nuclei, sources of relativistic nuclei, and typical detector set-ups are described in three subsequent chapters. Experimental facts on collisions of relativistic heavy ions are systematically presented in 15 consecutive chapters, starting from the simplest features like cross sections, multiplicities, and spectra of secondary particles and going to more involved characteristics like correlations, various relatively rare processes, and newly discovered features: collective flow, high pT suppression and jet quenching. Some entirely new topics are included, such as the difference between neutron and proton radii in nuclei, heavy hypernuclei, and electromagnetic effects on secondary particle spectra.Phenomenological approaches and related simple models are discussed in parallel with the presentation of experimental data. Near the end of the book, recent ideas about the new state of matter created in collisions of ultrarelativistic nuclei are discussed. In the final chapter, some predictions are given for nuclear collisions in the Large Hadron Collider (LHC), now in construction at the site of the European Organization for Nuclear Research (CERN), Geneva. Finally, the appendix gives us basic notions of relativistic kinematics, and lists the main international conferences related to this field. A concise reference book on physics of relativistic heavy ions, it shows the present status of this field.




The Large Hadron Collider


Book Description

Describes the technology and engineering of the Large Hadron collider (LHC), one of the greatest scientific marvels of this young 21st century. This book traces the feat of its construction, written by the head scientists involved, placed into the context of the scientific goals and principles.




Introduction to Relativistic Heavy Ion Collisions


Book Description

Introduction to Relativistic Heavy Ion Collisions László P. Csernai University of Bergen, Norway Written for postgraduates and advanced undergraduates in physics, this clear and concise work covers a wide range of subjects from intermediate to ultra-relativistic energies, thus providing an introductory overview of heavy ion physics. The reader is introduced to essential principles in heavy ion physics through a variety of questions, with answers, of varying difficulty. This timely text is based on a series of well received lectures given by Professor L. Csernai at the University of Minnesota, and the University of Bergen, where the author is based.




Chemical Abstracts


Book Description




Momentum Distributions


Book Description

This volume presents the proceedings of the Workshop on Momentum Distributions held on October 24 to 26, 1988 at Argonne National Laboratory. This workshop was motivated by the enormous progress within the past few years in both experimental and theoretical studies of momentum distributions, by the growing recognition of the importance of momentum distributions to the characterization of quantum many-body systems, and especially by the realization that momentum distribution studies have much in common across the entire range of modern physics. Accordingly, the workshop was unique in that it brought together researchers in nuclear physics, electronic systems, quantum fluids and solids, and particle physics to address the common elements of momentum distribution studies. The topics dis cussed in the workshop spanned more than ten orders of magnitude range in charac teristic energy scales. The workshop included an extraordinary variety of interactions from Coulombic to hard core repulsive, from non-relativistic to extreme relativistic.







The Large Hadron Collider


Book Description

This comprehensive volume summarizes and structures the multitude of results obtained at the LHC in its first running period and draws the grand picture of today’s physics at a hadron collider. Topics covered are Standard Model measurements, Higgs and top-quark physics, flavour physics, heavy-ion physics, and searches for supersymmetry and other extensions of the Standard Model. Emphasis is placed on overview and presentation of the lessons learned. Chapters on detectors and the LHC machine and a thorough outlook into the future complement the book. The individual chapters are written by teams of expert authors working at the forefront of LHC research.




The XVIII International Conference on Strangeness in Quark Matter (SQM 2019)


Book Description

This book focuses on new experimental and theoretical advances concerning the role of strange and heavy-flavour quarks in high-energy heavy-ion collisions and in astrophysical phenomena. The topics covered include • Strangeness and heavy-quark production in nuclear collisions and hadronic interactions, • Hadron resonances in the strongly-coupled partonic and hadronic medium, • Bulk matter phenomena associated with strange and heavy quarks, • QCD phase structure, • Collectivity in small systems, • Strangeness in astrophysics,• Open questions and new developments.




Problems and Solutions on Atomic, Nuclear and Particle Physics


Book Description

Atomic and Molecular Physics : Atomic Physics (1001--1122) - Molecular Physics (1123--1142) - Nuclear Physics : Basic Nuclear Properties (2001--2023) - Nuclear Binding Energy, Fission and Fusion (2024--2047) - The Deuteron and Nuclear forces (2048--2058) - Nuclear Models (2059--2075) - Nuclear Decays (2076--2107) - Nuclear Reactions (2108--2120) - Particle Physics : Interactions and Symmetries (3001--3037) - Weak and Electroweak Interactions, Grand Unification Theories (3038--3071) - Structure of Hadros and the Quark Model (3072--3090) - Experimental Methods and Miscellaneous Topics : Kinematics of High-Energy Particles (4001--4061) - Interactions between Radiation and Matter (4062--4085) - Detection Techniques and Experimental Methods (4086--4105) - Error Estimation and Statistics (4106--4118) - Particle Beams and Accelerators (4119--4131).