The Atmospheric Effects of Stratospheric Aircraft Project


Book Description

Scientists and policy-makers alike are concerned that operation of a fleet of high-speed civil transport (HSCT) aircraft could significantly affect the global atmosphere. HSCT emissions may have a direct effect on the chemistry of the atmosphere, leading to changes in the distribution of ozone; they may also have indirect effects on ozone and on global climate through coupling with radiative and dynamical processes in the atmosphere. An assessment of the atmospheric impact of a fleet of HSCTs thus requires not only an understanding of the chemistry of the natural stratosphere and its possible perturbations by HSCT emissions, but also an understanding of the pathways for transport of HSCT emissions within the atmosphere, and the resulting temporal and spatial distribution of HSCT emissions. The results of NASA's Atmospheric Effects of Stratospheric Aircraft (AESA) project were summarized in a 1995 NASA assessment. The present report looks at that summary and at more recent work to evaluate the state of the science. AESA has made good progress in the past few years. Satellite and aircraft observations have elucidated important aspects of large-scale transport processes. Field campaigns have provided a much better picture of the relative importance, below 20 km altitude, of the major catalytic cycles for ozone destruction. Careful intercomparisons of assessment models have led to reduction of some of the differences among the models. However, a number of uncertainties and inconsistencies still remain.







Supersonic Cruise Technology


Book Description

"This document provides a historic perspective of supersonic cruise technology, beginning with the early NACA supersonic research and including efforts during the B-70 and SST phase. It also records technological progress made in the NASA SCR and VCE programs." -- Foreward.




The Role of the Stratosphere in Global Change


Book Description

Scientists concerned with the processes occurring in the stratosphere are becoming more and more aware of the role that the stratosphere may play in the global climate and in global change in general. This book focuses on the basic processes taking place in the stratosphere and on the stratospheric changes which may occur from either natural or anthropogenic forcing. Of major concern here is the consequence of the increasing Antarctic Ozone Hole and the possibility of similar processes occurring at northern latitudes. One of the expected consequences of the change in the stratospheric composition, mainly ozone depletion, is the change in the penetration of UV-B in the troposphere, at the surface, and in the top layers of the ocean. Monitoring and modeling of those changes are still in infancy, even though the implications may be of utmost importance for the entire biosphere. Several aspects of these consequences with regard to aquatic ecosystems, terrestrial vegetation and human health are presented by experts in these fields.