Stretch, Twist, Fold: The Fast Dynamo


Book Description

The study of the magnetic fields of the Earth and Sun, as well as those of other planets, stars, and galaxies, has a long history and a rich and varied literature, including in recent years a number of review articles and books dedicated to the dynamo theories of these fields. Against this background of work, some explanation of the scope and purpose of the present monograph, and of the presentation and organization of the material, is therefore needed. Dynamo theory offers an explanation of natural magnetism as a phenomenon of magnetohydrodynamics (MHD), the dynamics governing the evolution and interaction of motions of an electrically conducting fluid and electromagnetic fields. A natural starting point for a dynamo theory assumes the fluid motion to be a given vector field, without regard for the origin of the forces which drive it. The resulting kinematic dynamo theory is, in the non-relativistic case, a linear advection-diffusion problem for the magnetic field. This kinematic theory, while far simpler than its magnetohydrodynamic counterpart, remains a formidable analytical problem since the interesting solutions lack the easiest symmetries. Much ofthe research has focused on the simplest acceptable flows and especially on cases where the smoothing effect of diffusion can be exploited. A close analog is the advection and diffusion of a scalar field by laminar flows, the diffusion being measured by an appropriate Peclet number. This work has succeeded in establishing dynamo action as an attractive candidate for astrophysical magnetism.




Encyclopedia of Astronomy & Astrophysics


Book Description

In a unique collaboration, Nature Publishing Group and Institute of Physics Publishing have published the most extensive and comprehensive reference work in astronomy and astrophysics. This unique resource covers the entire field of astronomy and astrophysics and this online version includes the full text of over 2,750 articles, plus sophisticated search and retrieval functionality and links to the primary literature. The Encyclopaedia's authority is assured by editorial and advisory boards drawn from the world's foremost astronomers and astrophysicists. This first class resource is an essential source of information for undergraduates, graduate students, researchers and seasoned professionals, as well as for committed amateurs, librarians and lay people wishing to consult the definitive astronomy and astrophysics reference work.




Heliophysics: Plasma Physics of the Local Cosmos


Book Description

Heliophysics is a developing scientific discipline integrating studies of the Sun's variability, the surrounding heliosphere, and climatic environments. Over the past few centuries, our understanding of how the Sun drives space weather and climate on the Earth and other planets has advanced at an ever-increasing rate. This volume, the first in this series of three heliophysics texts, integrates such diverse topics for the first time as a coherent intellectual discipline. It emphasises the physical processes coupling the Sun and Earth, allowing insights into the interaction of the solar wind and radiation with the Earth's magnetic field, atmosphere and climate system. It provides a core resource for advanced undergraduates and graduates, and also constitutes a foundational reference for researchers in heliophysics, astrophysics, plasma physics, space physics, solar physics, aeronomy, space weather, planetary science and climate science. Additional online resources, including lecture presentations and other teaching materials, are accessible at www.cambridge.org/9780521110617.




Self-Exciting Fluid Dynamos


Book Description

Treats the origin of magnetic fields in planets, stars and galaxies, and the manner of their evolution over time.




Treatise on Geophysics, Volume 8


Book Description

Treaties on Geophysics: Core Dynamics, Volume 8, provides a comprehensive review of the current state of understanding of core dynamics. The book begins by analyzing a subject of long-standing and on-going controversy: the gross energetics of the core. It then explains the important elements of dynamo theory; actual fluid motions in the core; the basic physical principles involved in thermochemical convection in the core and the basic equations governing the convection; and turbulence and the small-scale dynamics of the core. This is followed by discussions of the state of knowledge on rotation-induced core flows; the use of first-principles numerical models of self-sustaining fluid dynamos; and the behavior of polarity reversals in numerical dynamo models. The remaining chapters cover the various roles the inner core plays in core dynamics and the geodynamo; experiments that have shaped knowledge about the flows in the core that produce the geodynamo and govern its evolution; and ways the mantle can affect core dynamics, and corresponding ways the core can affect the mantle. - Self-contained volume starts with an overview of the subject then explores each topic with in depth detail - Extensive reference lists and cross references with other volumes to facilitate further research - Full-color figures and tables support the text and aid in understanding - Content suited for both the expert and non-expert




Mathematical Aspects of Natural Dynamos


Book Description

Although the origin of Earth's and other celestial bodies' magnetic fields remains unknown, we do know that the motion of electrically conducting fluids generates and maintains these fields, forming the basis of magnetohydrodynamics (MHD) and, to a larger extent, dynamo theory. Answering the need for a comprehensive, interdisciplinary introduction




Topological Methods in Hydrodynamics


Book Description

The first monograph to treat topological, group-theoretic, and geometric problems of ideal hydrodynamics and magnetohydrodynamics from a unified point of view. It describes the necessary preliminary notions both in hydrodynamics and pure mathematics with numerous examples and figures. The book is accessible to graduates as well as pure and applied mathematicians working in hydrodynamics, Lie groups, dynamical systems, and differential geometry.




Handbook of Mathematical Fluid Dynamics


Book Description

The Handbook of Mathematical Fluid Dynamics is a compendium of essays that provides a survey of the major topics in the subject. Each article traces developments, surveys the results of the past decade, discusses the current state of knowledge and presents major future directions and open problems. Extensive bibliographic material is provided. The book is intended to be useful both to experts in the field and to mathematicians and other scientists who wish to learn about or begin research in mathematical fluid dynamics. The Handbook illuminates an exciting subject that involves rigorous mathematical theory applied to an important physical problem, namely the motion of fluids.




Dynamos


Book Description

Dynamos is a collection of lectures given in July 2007 at the Les Houches Summer School on "Dynamos". - Provides a pedagogical introduction to topics in Dynamos - Addresses each topic from the basis to the most recent developments - Covers the lectures by internationally-renowned and leading experts




Lectures in Magnetohydrodynamics


Book Description

Magnetohydrodynamics, or MHD, is a theoretical way of describing the statics and dynamics of electrically conducting uids. The most important of these uids occurring in both nature and the laboratory are ionized gases, called plasmas. These have the simultaneous properties of conducting electricity and being electrically charge neutral on almost all length scales. The study of these gases is called plasma physics. MHD is the poor cousin of plasma physics. It is the simplest theory of plasma dynamics. In most introductory courses, it is usually afforded a short chapter or lecture at most: Alfven ́ waves, the kink mode, and that is it. (Now, on to Landau damping!) In advanced plasma courses, such as those dealing with waves or kinetic theory, it is given an even more cursory treatment, a brief mention on the way to things more profound and interesting. (It is just MHD! Besides, real plasma phy- cists do kinetic theory!) Nonetheless, MHD is an indispensable tool in all applications of plasma physics.