Understanding Emotions in Mathematical Thinking and Learning


Book Description

Emotions play a critical role in mathematical cognition and learning. Understanding Emotions in Mathematical Thinking and Learning offers a multidisciplinary approach to the role of emotions in numerical cognition, mathematics education, learning sciences, and affective sciences. It addresses ways in which emotions relate to cognitive processes involved in learning and doing mathematics, including processing of numerical and physical magnitudes (e.g. time and space), performance in arithmetic and algebra, problem solving and reasoning attitudes, learning technologies, and mathematics achievement. Additionally, it covers social and affective issues such as identity and attitudes toward mathematics. - Covers methodologies in studying emotion in mathematical knowledge - Reflects the diverse and innovative nature of the methodological approaches and theoretical frameworks proposed by current investigations of emotions and mathematical cognition - Includes perspectives from cognitive experimental psychology, neuroscience, and from sociocultural, semiotic, and discursive approaches - Explores the role of anxiety in mathematical learning - Synthesizes unifies the work of multiple sub-disciplines in one place




Mathematics Anxiety


Book Description

Feelings of apprehension and fear brought on by mathematical performance can affect correct mathematical application and can influence the achievement and future paths of individuals affected by it. In recent years, mathematics anxiety has become a subject of increasing interest both in educational and clinical settings. This ground-breaking collection presents theoretical, educational and psychophysiological perspectives on the widespread phenomenon of mathematics anxiety. Featuring contributions from leading international researchers, Mathematics Anxiety challenges preconceptions and clarifies several crucial areas of research, such as the distinction between mathematics anxiety from other forms of anxiety (i.e., general or test anxiety); the ways in which mathematics anxiety has been assessed (e.g. throughout self-report questionnaires or psychophysiological measures); the need to clarify the direction of the relationship between math anxiety and mathematics achievement (which causes which). Offering a revaluation of the negative connotations usually associated with mathematics anxiety and prompting avenues for future research, this book will be invaluable to academics and students in the field psychological and educational sciences, as well as teachers working with students who are struggling with mathematics anxiety




Overcoming Math Anxiety


Book Description




Affect and Mathematical Problem Solving


Book Description

Research on cognitive aspects of mathematical problem solving has made great progress in recent years, but the relationship of affective factors to problem-solving performance has been a neglected research area. The purpose of Affect and Mathematical Problem Solving: A New Perspective is to show how the theories and methods of cognitive science can be extended to include the role of affect in mathematical problem solving. The book presents Mandler's theory of emotion and explores its implications for the learning and teaching of mathematical problem solving. Also, leading researchers from mathematics, education, and psychology report how they have integrated affect into their own cognitive research. The studies focus on metacognitive processes, aesthetic influences on expert problem solvers, teacher decision-making, technology and teaching problem solving, and beliefs about mathematics. The results suggest how emotional factors like anxiety, frustration, joy, and satisfaction can help or hinder performance in problem solving.




Learning to Love Math


Book Description

Is there a way to get students to love math? Dr. Judy Willis responds with an emphatic yes in this informative guide to getting better results in math class. Tapping into abundant research on how the brain works, Willis presents a practical approach for how we can improve academic results by demonstrating certain behaviors and teaching students in a way that minimizes negativity. With a straightforward and accessible style, Willis shares the knowledge and experience she has gained through her dual careers as a math teacher and a neurologist. In addition to learning basic brain anatomy and function, readers will learn how to * Improve deep-seated negative attitudes toward math. * Plan lessons with the goal of "achievable challenge" in mind. * Reduce mistake anxiety with techniques such as errorless math and estimation. * Teach to different individual learning strengths and skill levels. * Spark motivation. * Relate math to students' personal interests and goals. * Support students in setting short-term and long-term goals. * Convince students that they can change their intelligence. With dozens of strategies teachers can use right now, Learning to Love Math puts the power of research directly into the hands of educators. A Brain Owner's Manual, which dives deeper into the structure and function of the brain, is also included—providing a clear explanation of how memories are formed and how skills are learned. With informed teachers guiding them, students will discover that they can build a better brain . . . and learn to love math!




Overcoming Math Anxiety


Book Description

Explains the nature and origins of anxiety about mathematics and provides advice on working with a variey of specific mathematical concepts and problems.




An Investigation of how African American Community College Students with Different Levels of Mathematics Anxiety Engage in Problem Solving Tasks


Book Description

Using the frameworks of Malloy (1994) and Montague (2003), I was able to make the following recommendations. (1) Exhibiting mathematics anxiety symptoms may not completely hinder student performance. (2) Drawing pictures or diagrams maybe important for high mathematics anxiety students when solving problems, but not necessarily meaningful. (3) Mathematics anxiety may lead to an inability to recall previously studied material which hinders student performance. (4) Failure to use all of the thinking processes described by Montague (2003) does not hinder the student's ability to successfully solve mathematical problems. (5) Difficulty with reading skills may hinder the problem solving process. (6) Students must be able to check their calculations and check for the use of correct procedures. (7) Mathematical anxiety symptoms can be visibly present even if a student does not notice the symptoms himself.




What's Math Got to Do with It?


Book Description

Discusses how to make mathematics for children enjoyable and why it is important for American children to succeed in mathematics and choose math-based career paths in the future.




Number Talks


Book Description

"A multimedia professional learning resource"--Cover.