Stress Biology of Yeasts and Fungi


Book Description

This book describes cutting-edge science and technology of the characterization, breeding, and development of yeasts and fungi used worldwide in fermentation industries such as alcohol beverage brewing, bread making, and bioethanol production. The book also covers numerous topics and important areas the previous literature has missed, ranging widely from molecular mechanisms to biotechnological applications related to stress response/tolerance of yeasts and fungi. During fermentation processes, cells of yeast and fungus, mostly Saccharomyces and Aspergillus oryzae spp., respectively, are exposed to a variety of fermentation “stresses”. Such stresses lead to growth inhibition or cell death. Under severe stress conditions, their fermentation ability and enzyme productivity are rather limited. Therefore, in terms of industrial application, stress tolerance is the key characteristic for yeast and fungal cells. The first part of this book provides stress response/tolerance mechanisms of yeast used for the production of sake, beer, wine, bread, and bioethanol. The second part covers stress response/tolerance mechanisms of fungi during environmental changes and biological processes of industrial fermentation. Readers benefit nicely from the novel understandings and methodologies of these industrial microbes. The book is suitable for both academic scientists and graduate-level students specialized in applied microbiology and biochemistry and biotechnology and for industrial researchers and engineers who are involved in fermentation-based technologies. The fundamental studies described in this book can be applied to the breeding of useful microbes (yeasts, fungi), the production of valuable compounds (ethanol, CO2, amino acids, organic acids, and enzymes) and the development of promising processes to solve environmental issues (bioethanol, biorefinery).




Stress Response Mechanisms in Fungi


Book Description

This book covers both the molecular basics of fungal stress response strategies as well as biotechnological applications thereof. The complex regulatory mechanisms of stress response pathways are presented in a concise and well-readable manner. Also, light will be shed on the interconnection of pathways responding to different types of stress. Profound knowledge of stress responses in yeast and filamentous fungi is crucial for further optimization of industrial processes. Applications are manifold, for example in fungicide development, for improving the resistance of crop plants to fungal pathogens, but also in medicine to help curing fungal infections. The book targets researchers from academia and industry, as well as graduate students interested in microbiology, mycology and biomedicine.




Stress Response Mechanisms in Fungi


Book Description

This book covers both the molecular basics of fungal stress response strategies as well as biotechnological applications thereof. The complex regulatory mechanisms of stress response pathways are presented in a concise and well-readable manner. Also, light will be shed on the interconnection of pathways responding to different types of stress. Profound knowledge of stress responses in yeast and filamentous fungi is crucial for further optimization of industrial processes. Applications are manifold, for example in fungicide development, for improving the resistance of crop plants to fungal pathogens, but also in medicine to help curing fungal infections. The book targets researchers from academia and industry, as well as graduate students interested in microbiology, mycology and biomedicine.




The Fungal Kingdom


Book Description

Fungi research and knowledge grew rapidly following recent advances in genetics and genomics. This book synthesizes new knowledge with existing information to stimulate new scientific questions and propel fungal scientists on to the next stages of research. This book is a comprehensive guide on fungi, environmental sensing, genetics, genomics, interactions with microbes, plants, insects, and humans, technological applications, and natural product development.




Candida and Candidosis


Book Description

A comprehensive and critical review of the medical and scientific literature on Candida infections by a leading authority in the field. Covers all aspects of the subject, including epidemiology, pathogensis and treatment, as well as the properties of the fungi that cause infections.




Root Physiology: from Gene to Function


Book Description

"Reprinted from Plant and soil, volume 274 (2005)."




Fungal Stress Mechanisms and Responses


Book Description

AAM: Fungal Stress Mechanisms and Responses explores the adaptive strategies and biotechnological applications of fungi under stress conditions. This volume features an array of reviews by experts in the field, reviewing different aspects of fungal stress responses. The initial three chapters focus on stress in fungal insect pathogens, while chapters 4–6 address the impact of stressful environmental conditions on fungi used for bioremediation. The last chapter investigates the molecular aspects of copper homeostasis in human fungal pathogens. This volume offers a comprehensive collection of findings that help our understanding of fungal stress responses and their applications in agriculture, medicine, and the environment. - Understanding stress responses in insect-pathogenic fungi - Employing plant symbiotic fungi and basidiomycetes for mycoremediation of toxic metal-organic soils - How fungi regulate copper for optimal function and innovation in biotechnology and antifungal drug development




Immunology of Fungal Infections


Book Description

This text covers all aspects of the immunology of fungal infection. Beyond the basics, coverage includes recent developments in innate and adaptive immunological mechanisms involved in the host response to fungal infection. The volume’s topical sections provide an immunological perspective on the cells, soluble factors and receptors involved in recognising and combating fungal infections. Discussion includes descriptions of immunity to specific pathogens, immune-escape mechanisms used by fungi, and therapeutic strategies.




Plant Microbiome: Stress Response


Book Description

This book presents state-of-the-art research on the many facets of the plant microbiome, including diversity, ecology, physiology and genomics, as well as molecular mechanisms of plant-microbe interactions. Topics considered include the importance of microbial secondary metabolites in stimulating plant growth, induced systemic resistance, tolerance to abiotic stress, and biological control of plant pathogens. The respective contributions show how microbes help plants to cope with abiotic stresses, and represent significant progress toward understanding the complex regulatory networks critical to host-microbe interaction and plant adaptation in extreme environments. New insights into the mechanisms of microbial actions in inducing plant stress tolerance open new doors for improving the efficacy of microbial strategies, and could produce new ways of economically increasing crop yields without harming the environment. As such, this book offers an essential resource for students and researchers with an interest in plant-microbe interaction, as well as several possibilities for employing the plant microbiome in the enhancement of crop productivity under future climate change scenarios.




Arbuscular Mycorrhizas and Stress Tolerance of Plants


Book Description

This book reviews the potential mechanisms in arbuscular mycorrhizas (AMs), in the hope that this can help arbuscular mycorrhizal fungi (AMF) to be more used efficiently as a biostimulant to enhance stress tolerance in the host plants. AMF, as well as plants, are often exposed to all or many of the abiotic and biotic stresses, including extreme temperatures, pH, drought, water-logging, toxic metals and soil pathogens. Studies have indicated a quick response to these stresses involving several mechanisms, such as root morphological modification, reactive oxygen species change, osmotic adjustment, direct absorption of water by extraradical hyphae, up-regulated expression of relevant stressed genes, glomalin-related soil protein release, etc. The underlying complex, multi-dimensional strategy is involved in morphological, physiological, biochemical, and molecular processes. The AMF responses are often associated with homeostatic regulation of the internal and external environment, and are therefore critical for plant health, survival and restoration in native ecosystems and good soil structure.