Stress Trajectory and Advanced Hydraulic-fracture Simulations for the Eastern Gas Shales Project. Final Report, April 30, 1981-July 30, 1983


Book Description

A summary review of hydraulic fracture modeling is given. Advanced hydraulic fracture model formulations and simulation, using the finite element method, are presented. The numerical examples include the determination of fracture width, height, length, and stress intensity factors with the effects of frac fluid properties, layered strata, in situ stresses, and joints. Future model extensions are also recommended. 66 references, 23 figures.




Hydraulic Fracturing and Associated Stress Modeling for the Eastern Gas Shales Project. Final Report


Book Description

Frac fluid flow, structure, and fracture mechanics simulations are developed for predicting and optimizing fracture dimensions and fluid leak-offs. Roles of in situ stress and material properties for possible vertical migration of fractures from the pay zone are discussed. Rationale for foam and dendritic fracturing experiments is presented along with numerical experiments for examining the phenomena of spalling of the fracture faces and conditions for secondary fracture initiation. Assignment of conventional, foam, cyrogenic, dendritic, and explosive fracturing treatments for specific reservoir properties is considered. Variables include fracture density and extent, shale thickness, in-situ stress gradients, energy assist mechanisms, well clean-up, shale-frac fluid interaction, proppant selection, and fracture height control. The analysis suggests that correlation with prevailing in situ stress gradients are promising diagnostic indicators for fracture treatment selection and design. In conclusion, the comprehensive development of an economical strategy requires extensive and controlled field testing with supporting predictive analyses of reservoir responses. Finite element modeling of reservoir in situ stress trajectories and the flow and fracture responses in the reservoir is recommended.







Fossil Energy Update


Book Description










Numerical Simulation in Hydraulic Fracturing: Multiphysics Theory and Applications


Book Description

The expansion of unconventional petroleum resources in the recent decade and the rapid development of computational technology have provided the opportunity to develop and apply 3D numerical modeling technology to simulate the hydraulic fracturing of shale and tight sand formations. This book presents 3D numerical modeling technologies for hydraulic fracturing developed in recent years, and introduces solutions to various 3D geomechanical problems related to hydraulic fracturing. In the solution processes of the case studies included in the book, fully coupled multi-physics modeling has been adopted, along with innovative computational techniques, such as submodeling. In practice, hydraulic fracturing is an essential project component in shale gas/oil development and tight sand oil, and provides an essential measure in the process of drilling cuttings reinjection (CRI). It is also an essential measure for widened mud weight window (MWW) when drilling through naturally fractured formations; the process of hydraulic plugging is a typical application of hydraulic fracturing. 3D modeling and numerical analysis of hydraulic fracturing is essential for the successful development of tight oil/gas formations: it provides accurate solutions for optimized stage intervals in a multistage fracking job. It also provides optimized well-spacing for the design of zipper-frac wells. Numerical estimation of casing integrity under stimulation injection in the hydraulic fracturing process is one of major concerns in the successful development of unconventional resources. This topic is also investigated numerically in this book. Numerical solutions to several other typical geomechanics problems related to hydraulic fracturing, such as fluid migration caused by fault reactivation and seismic activities, are also presented. This book can be used as a reference textbook to petroleum, geotechnical and geothermal engineers, to senior undergraduate, graduate and postgraduate students, and to geologists, hydrogeologists, geophysicists and applied mathematicians working in this field. This book is also a synthetic compendium of both the fundamentals and some of the most advanced aspects of hydraulic fracturing technology.




Hydraulic Fracturing in Unconventional Reservoirs


Book Description

Hydraulic Fracturing in Unconventional Reservoirs: Theories, Operations, and Economic Analysis, Second Edition, presents the latest operations and applications in all facets of fracturing. Enhanced to include today's newest technologies, such as machine learning and the monitoring of field performance using pressure and rate transient analysis, this reference gives engineers the full spectrum of information needed to run unconventional field developments. Covering key aspects, including fracture clean-up, expanded material on refracturing, and a discussion on economic analysis in unconventional reservoirs, this book keeps today's petroleum engineers updated on the critical aspects of unconventional activity. - Helps readers understand drilling and production technology and operations in shale gas through real-field examples - Covers various topics on fractured wells and the exploitation of unconventional hydrocarbons in one complete reference - Presents the latest operations and applications in all facets of fracturing




Geomechanics and Hydraulic Fracturing for Shale Reservoirs


Book Description

This book is intended as a reference book for advanced graduate students and research engineers in shale gas development or rock mechanical engineering. Globally, there is widespread interest in exploiting shale gas resources to meet rising energy demands, maintain energy security and stability in supply and reduce dependence on higher carbon sources of energy, namely coal and oil. However, extracting shale gas is a resource intensive process and is dependent on the geological and geomechanical characteristics of the source rocks, making the development of certain formations uneconomic using current technologies. Therefore, evaluation of the physical and mechanical properties of shale, together with technological advancements, is critical in verifying the economic viability of such formation. Accurate geomechanical information about the rock and its variation through the shale is important since stresses along the wellbore can control fracture initiation and frac development. In addition, hydraulic fracturing has been widely employed to enhance the production of oil and gas from underground reservoirs. Hydraulic fracturing is a complex operation in which the fluid is pumped at a high pressure into a selected section of the wellbore. The interaction between the hydraulic fractures and natural fractures is the key to fracturing effectiveness prediction and high gas development. The development and growth of a hydraulic fracture through the natural fracture systems of shale is probably more complex than can be described here, but may be somewhat predictable if the fracture system and the development of stresses can be explained. As a result, comprehensive shale geomechanical experiments, physical modeling experiment and numerical investigations should be conducted to reveal the fracturing mechanical behaviors of shale.