Structural Analysis using Computational Chemistry


Book Description

Computational chemistry is a science that allows researchers to study, characterize and predict the structure and stability of chemical systems. In other words: studying energy differences between different states to explain spectroscopic properties and reaction mechanisms at the atomic level. This field is gaining in relevance and strength due to field applications from chemical engineering, electrical engineering, electronics, biomedicine, biology, materials science, to name but a few. Structural Analysis using Computational Chemistry arises from the need to present the progress of computational chemistry in various application areas. Technical topics discussed in the book include: Quantum mechanics and structural molecular study (AM1)Application of quantum models in molecular analysisMolecular analysis of insulin through controlled adsorption in hydrogels based on chitosanAnalysis and molecular characterization of organic materials for application in solar cellsDetermination of thermodynamic properties of ionic liquids through molecular simulation




Structural Analysis Using Computational Chemistry


Book Description

Structural Analysis using Computational Chemistry arises from the need to present the progress of computational chemistry in various application areas.




The Crystalline States of Organic Compounds


Book Description

The Crystalline States of Organic Compounds is a broad survey of the techniques by which molecular crystals are investigated, modeled, and applied, starting with the fundamentals of intra- and intermolecular bonding supplemented by a concise tutorial on present-day diffraction methods, then proceeding to an examination of crystallographic databases with their statistics and of such fundamental and fast-growing topics as intermolecular potentials, polymorphism, co-crystallization, and crystal structure prediction by computer. A substantial part of the book is devoted to the techniques of choice in modern simulation, Monte Carlo and molecular dynamics, with their most recent developments and application to formed crystals and to the concomitant phases involved in nucleation and growth. Drawing on the decades-long experience of its author in teaching and research in the field of organic solid state, The Crystalline States of Organic Compounds is an indispensable source of key insights and future directions for students and researchers at any level, in academia and in industry. - Condenses theoretical information and practical methods in a single resource - Provides a guide on the use of crystallographic databases, structure statistics, and molecular simulations - Includes a large number of worked examples and tutorials, with extensive graphics and multimedia




Computational Chemistry Methodology in Structural Biology and Materials Sciences


Book Description

Computational Chemistry Methodology in Structural Biology and Materials Sciences provides a selection of new research in theoretical and experimental chemistry, focusing on topics in the materials science and biological activity. Part 1, on Computational Chemistry Methodology in Biological Activity, of the book emphasizes presents new developments in the domain of theoretical and computational chemistry and its applications to bioactive molecules. It looks at various aspects of density functional theory and other issues. Part 2, on Computational Chemistry Methodology in Materials Science, presents informative new research on computational chemistry as applied to materials science. The wide range of topics regarding the application of theoretical and experimental chemistry and materials science and biological domain will be valuable in the context of addressing contemporary research problems.




Computational Molecular Biology


Book Description

This book covers applications of computational techniques to biological problems. These techniques are based by an ever-growing number of researchers with different scientific backgrounds - biologists, chemists, and physicists.The rapid development of molecular biology in recent years has been mirrored by the rapid development of computer hardware and software. This has resulted in the development of sophisticated computational techniques and a wide range of computer simulations involving such methods. Among the areas where progress has been profound is in the modeling of DNA structure and function, the understanding at a molecular level of the role of solvents in biological phenomena, the calculation of the properties of molecular associations in aqueous solutions, computationally assisted drug design, the prediction of protein structure, and protein - DNA recognition, to mention just a few examples. This volume comprises a balanced blend of contributions covering such topics. They reveal the details of computational approaches designed for biomoleucles and provide extensive illustrations of current applications of modern techniques.A broad group of readers ranging from beginning graduate students to molecular biology professions should be able to find useful contributions in this selection of reviews.







Theoretical Organic Chemistry


Book Description

This volume is devoted to the various aspects of theoretical organic chemistry. In the nineteenth century, organic chemistry was primarily an experimental, empirical science. Throughout the twentieth century, the emphasis has been continually shifting to a more theoretical approach. Today, theoretical organic chemistry is a distinct area of research, with strong links to theoretical physical chemistry, quantum chemistry, computational chemistry, and physical organic chemistry.The objective in this volume has been to provide a cross-section of a number of interesting topics in theoretical organic chemistry, starting with a detailed account of the historical development of this discipline and including topics devoted to quantum chemistry, physical properties of organic compounds, their reactivity, their biological activity, and their excited-state properties.




Practical Aspects of Computational Chemistry V


Book Description

This book presents contributions on a wide range of computational research applied to fields ranging from molecular systems to bulk structures. This volume highlights current trends in modern computational chemistry and discusses the development of theoretical methodologies, state-of-the-art computational algorithms and their practical applications. This volume is part of a continuous effort by the editors to document recent advances by prominent researchers in the area of computational chemistry. Most of the chapters are contributed by invited speakers and participants to International annual conference “Current Trends in Computational Chemistry”, organized by Jerzy Leszczynski, one of the editors of the current volume. This conference series has become an exciting platform for eminent theoretical and computational chemists to discuss their recent findings and is regularly honored by the presence of Nobel laureates. Topics covered in the book include reactive force-field methodologies, coarse-grained modeling, DNA damage radiosensitizers, modeling and simulation of surfaces and interfaces, non-covalent interactions, and many others. The book is intended for theoretical and computational chemists, physical chemists, material scientists and those who are eager to apply computational chemistry methods to problems of chemical and physical importance. It is a valuable resource for undergraduate, graduate and PhD students as well as for established researchers.




Structural Analysis using Computational Chemistry


Book Description

Computational chemistry is a science that allows researchers to study, characterize and predict the structure and stability of chemical systems. In other words: studying energy differences between different states to explain spectroscopic properties and reaction mechanisms at the atomic level. This field is gaining in relevance and strength due to field applications from chemical engineering, electrical engineering, electronics, biomedicine, biology, materials science, to name but a few. Structural Analysis using Computational Chemistry arises from the need to present the progress of computational chemistry in various application areas. Technical topics discussed in the book include: • Quantum mechanics and structural molecular study (AM1)• Application of quantum models in molecular analysis• Molecular analysis of insulin through controlled adsorption in hydrogels based on chitosan• Analysis and molecular characterization of organic materials for application in solar cells• Determination of thermodynamic properties of ionic liquids through molecular simulation




Computational Chemistry Methodology in Structural Biology and Materials Sciences


Book Description

Computational Chemistry Methodology in Structural Biology and Materials Sciences provides a selection of new research in theoretical and experimental chemistry, focusing on topics in the materials science and biological activity. Part 1, on Computational Chemistry Methodology in Biological Activity, of the book emphasizes presents new developments in the domain of theoretical and computational chemistry and its applications to bioactive molecules. It looks at various aspects of density functional theory and other issues. Part 2, on Computational Chemistry Methodology in Materials Science, presents informative new research on computational chemistry as applied to materials science. The wide range of topics regarding the application of theoretical and experimental chemistry and materials science and biological domain will be valuable in the context of addressing contemporary research problems.