Bacterial Cell Wall


Book Description

Studies of the bacterial cell wall emerged as a new field of research in the early 1950s, and has flourished in a multitude of directions. This excellent book provides an integrated collection of contributions forming a fundamental reference for researchers and of general use to teachers, advanced students in the life sciences, and all scientists in bacterial cell wall research. Chapters include topics such as: Peptidoglycan, an essential constituent of bacterial endospores; Teichoic and teichuronic acids, lipoteichoic acids, lipoglycans, neural complex polysaccharides and several specialized proteins are frequently unique wall-associated components of Gram-positive bacteria; Bacterial cells evolving signal transduction pathways; Underlying mechanisms of bacterial resistance to antibiotics.




Prokaryotic Cytoskeletons


Book Description

This book describes the structures and functions of active protein filaments, found in bacteria and archaea, and now known to perform crucial roles in cell division and intra-cellular motility, as well as being essential for controlling cell shape and growth. These roles are possible because the cytoskeletal and cytomotive filaments provide long range order from small subunits. Studies of these filaments are therefore of central importance to understanding prokaryotic cell biology. The wide variation in subunit and polymer structure and its relationship with the range of functions also provide important insights into cell evolution, including the emergence of eukaryotic cells. Individual chapters, written by leading researchers, review the great advances made in the past 20-25 years, and still ongoing, to discover the architectures, dynamics and roles of filaments found in relevant model organisms. Others describe one of the families of dynamic filaments found in many species. The most common types of filament are deeply related to eukaryotic cytoskeletal proteins, notably actin and tubulin that polymerise and depolymerise under the control of nucleotide hydrolysis. Related systems are found to perform a variety of roles, depending on the organisms. Surprisingly, prokaryotes all lack the molecular motors associated with eukaryotic F-actin and microtubules. Archaea, but not bacteria, also have active filaments related to the eukaryotic ESCRT system. Non-dynamic fibres, including intermediate filament-like structures, are known to occur in some bacteria.. Details of known filament structures are discussed and related to what has been established about their molecular mechanisms, including current controversies. The final chapter covers the use of some of these dynamic filaments in Systems Biology research. The level of information in all chapters is suitable both for active researchers and for advanced students in courses involving bacterial or archaeal physiology, molecular microbiology, structural cell biology, molecular motility or evolution. Chapter 3 of this book is open access under a CC BY 4.0 license.







The Surfaceome


Book Description

This volume provides readers with the latest techniques and tools to assess modifications and functions of the surfaceome. The chapters in this book are divided into 4 sections: discovery-based approaches to surfaceome content; targeted approaches for surfaceome content; cell-based function analyses related to surfaceome content; and computational approaches in surfaceome studies. Section 1 focuses on discovery-based approaches for cataloging surfaceome content that analyses the surfaceome of bacteria, avian embryos, and mammalian systems. Section 2 discusses methods that over-express specific targets in Sf9 cells and generate bi-specific antibodies for targeting cancer and somatic cells. Section 3 explores voltage dependent sodium channels and high-content electrophysiological analyses. The final section looks at the new web-based platform known as targets-search. Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Comprehensive and thorough, Surfaceome: Methods and Protocols assists in the study of cell surface protein biology and function. It is a valuable resource for all researchers interested in this field.




Regulation of Bacterial Virulence


Book Description

A comprehensive compendium of scholarly contributions relating to bacterial virulence gene regulation. • Provides insights into global control and the switch between distinct infectious states (e.g., acute vs. chronic). • Considers key issues about the mechanisms of gene regulation relating to: surface factors, exported toxins and export mechanisms. • Reflects on how the regulation of intracellular lifestyles and the response to stress can ultimately have an impact on the outcome of an infection. • Highlights and examines some emerging regulatory mechanisms of special significance. • Serves as an ideal compendium of valuable topics for students, researchers and faculty with interests in how the mechanisms of gene regulation ultimately affect the outcome of an array of bacterial infectious diseases.




Glycoscience


Book Description

As a reflection of the quantum leap that has been made in the study of glycostructures, the first edition of this book has been completely revised and updated. The editors give up-to-date information on glycostructures, their chemistry and chemical biology in the form of a completely comprehensive survey. Glycostructures play highly diverse and crucial roles in a myriad of organisms and important systems in biology, physiology, medicine, bioengineering and technology. Only in recent years have the tools been developed to partly understand the highly complex functions and the chemistry behind them. While many facts remain undiscovered, this MRW has been contributed to by a large number of the world’s leading researchers in the field.




Bacterial Cell Wall Structure and Dynamics


Book Description

Bacterial cells are encased in a cell wall, which is required to maintain cell shape and to confer physical strength to the cell. The cell wall allows bacteria to cope with osmotic and environmental challenges and to secure cell integrity during all stages of bacterial growth and propagation, and thus has to be sufficiently rigid. Moreover, to accommodate growth processes, the cell wall at the same time has to be a highly dynamic structure: During cell enlargement, division, and differentiation, bacteria continuously remodel, degrade, and resynthesize their cell wall, but pivotally need to assure cell integrity during these processes. Finally, the cell wall is also adjusted according to both environmental constraints and metabolic requirements. However, how exactly this is achieved is not fully understood. The major structural component of the bacterial cell wall is peptidoglycan (PG), a mesh-like polymer of glycan chains interlinked by short-chain peptides, constituting a net-like macromolecular structure that has historically also termed murein or murein sacculus. Although the basic structure of PG is conserved among bacteria, considerable variations occur regarding cross-bridging, modifications, and attachments. Moreover, different structural arrangements of the cell envelope exist within bacteria: a thin PG layer sandwiched between an inner and outer membrane is present in Gram-negative bacteria, and a thick PG layer decorated with secondary glycopolymers including teichoic acids, is present in Gram-positive bacteria. Furthermore, even more complex envelope structures exist, such as those found in mycobacteria. Crucially, all bacteria possess a multitude of often redundant lytic enzymes, termed “autolysins”, and other cell wall modifying and synthesizing enzymes, allowing to degrade and rebuild the various structures covering the cells. However, how cell wall turnover and cell wall biosynthesis are coordinated during different stages of bacterial growth is currently unclear. The mechanisms that prevent cell lysis during these processes are also unclear. This Research Topic focuses on the dynamics of the bacterial cell wall, its modifications, and structural rearrangements during cell growth and differentiation. It pays particular attention to the turnover of PG, its breakdown and recycling, as well as the regulation of these processes. Other structures, for example, secondary polymers such as teichoic acids, which are dynamically changed during bacterial growth and differentiation, are also covered. In recent years, our view on the bacterial cell envelope has undergone a dramatic change that challenged old models of cell wall structure, biosynthesis, and turnover. This collection of articles aims to contribute to new understandings of bacterial cell wall structure and dynamics.




Membrane Biogenesis


Book Description

Many individual aspects of the dynamics and assembly of biological membranes have been studied in great detail. Cell biological approaches, advanced genetics, biophysics and biochemistry have greatly contributed to an increase in our knowledge in this field.lt is obvious however, that the three major membrane constituents - lipids, proteins and carbohydrates- are studied, in most cases separately and that a coherent overview of the various aspects of membrane biogenesis is not readily available. The NATO Advanced Study Institute on "New Perspectives in the Dynamics of Assembly of Biomembranes" intended to provide such an overview: it was set up to teach students and specialists the achievements obtained in the various research areas and to try and integrate the numerous aspects of membrane assembly into a coherent framework. The articles in here reflect this. Statting with detailed contributions on phospholipid structure, dynamics, organization and biogenesis, an up to date overview of the basic, lipidic backbone of biomembranes is given. Extensive progress is made in the research on membrane protein biosynthesis. In particular the post- and co-translational modification processes of proteins, the mechanisms of protein translocation and the sorting mechanisms which are necessary to direct proteins to their final, intra - or extracellular destination have been characterized in detail. Modern genetic approaches were indispensable in this research area: gene cloning, hybrid protein construction, site directed mutagenesis and sequencing techniques elucidated many functional aspects of specific nucleic acid and amino acid sequences.




Metal Transporters


Book Description

This volume of Current Topics in Membranes focuses on metal transmembrane transporters and pumps, a recently discovered family of membrane proteins with many important roles in the physiology of living organisms. The book summarizes the most recent advances in the field of metal ion transport and provides a broad overview of the major classes of transporters involved in homeostasis of heavy metals. Various families of the transporters and metal specificities are discussed with the focus on the structural and mechanistic aspects of their function and regulation. The reader will access information obtained through a variety of approaches ranging from X-ray crystallography to cell biology and bioinformatics, which have been applied to transporters identified in diverse biological systems, such as pathogenic bacteria, plants, humans and others. Field is cutting-edge and a lot of the information is new to research community Wide breadth of topic coverage Contributors of high renown and expertise




Bacterial Cell Walls and Membranes


Book Description

This book provides an up-to-date overview of the architecture and biosynthesis of bacterial and archaeal cell walls, highlighting the evolution-based similarities in, but also the intriguing differences between the cell walls of Gram-negative bacteria, the Firmicutes and Actinobacteria, and the Archaea. The recent major advances in this field, which have brought to light many new structural and functional details, are presented and discussed. Over the past five years, a number of novel systems, e.g. for lipid, porin and lipopolysaccharide biosynthesis have been described. In addition, new structural achievements with periplasmic chaperones have been made, all of which have revealed amazing details on how bacterial cell walls are synthesized. These findings provide an essential basis for future research, e.g. the development of new antibiotics. The book’s content is the logical continuation of Volume 84 of SCBI (on Prokaryotic Cytoskeletons), and sets the stage for upcoming volumes on Protein Complexes.