Structural and Computational Glycobiology: Immunity and Infection


Book Description

Interest in understanding the biological role of carbohydrates has increased significantly over the last 20 years. The use of structural techniques to understand carbohydrate-protein recognition is still a relatively young area, but one that is of emerging importance. The high flexibility of carbohydrates significantly complicates the determination of high quality structures of their complexes with proteins. Specialized techniques are often required to understand the complexity of carbohydrate recognition by proteins. In this Research Topic, we will focus on structural and computational approaches to understanding carbohydrate recognition by proteins involved in immunity and infection. Particular areas of focus include cancer immunotherapeutics, carbohydrate-lectin interactions, glycosylation and glycosyltransferases.




Structural Glycobiology


Book Description

Structural Glycobiology covers the experimental, theoretical, and alternative technologies used in the study of the structural basis for the diverse biological roles of carbohydrates. The book overviews the application of specialized technologies to the study of carbohydrates in biology, reviews relevant and current research in the field, and is illustrated throughout by specific examples of how research investigations have yielded key structural and associated biological data on carbohydrates and glycolipids. In particular, the book focuses on: X-ray crystallography and small-angle scattering, NMR, and cryo-electron microscopy techniques Theoretical (modeling-based) approaches, such as molecular mechanics, molecular dynamics, free energy calculations, and carbohydrate docking Alternative techniques for yielding structural information on carbohydrates from complex biological samples Carbohydrates in medicine, specifically in areas that have been directly impacted by our understanding of the structural role of carbohydrates in immune recognition: cancer, organ transplantation, and infection










Computational Immunology


Book Description

The immune system is highly complex system with large number of macromolecules, signaling pathways, protein-protein interactions, and gene expressions. Studies from genomics, transcriptomics, metabolomics are generating huge high throughput data that needs to be analyzed for understanding the Immune system in Health and Disease. Computational approaches arehelping in understanding the study of complex biology of immunology and thereby enabling design of therapeutic strategies in diseases like infectious diseases, immunodeficiency, allergic, hypersensitive, autoimmune disorders and diseases like Cancer, HIV etc. Computational Immunology: Basics highlights the basics of the immune system and function in health and disease. This book offers comprehensive coverage of the most essential topics, including Overview of Immunology and computational Immunology Immune organs and cells, antigen, antibody, B, cell, T cell Antigen Processing and presentation Diseases due to abnormalities of the immune system Cancer Biology Shyamasree Ghosh (MSc, PhD, PGDHE, PGDBI), is currently working in the School of Biological Sciences, National Institute of Science Education and Research (NISER), Bhubaneswar, DAE, Govt of India, graduated from the prestigious Presidency College Kolkata in 1998. She was awarded the prestigious National Scholarship from the Government of India. She has worked and published extensively in glycobiology, sialic acids, immunology, stem cells and nanotechnology. She has authored several publications that include books and encyclopedia chapters in reputed journals and books.




Glycobiology of Innate Immunology


Book Description

This book presents the latest knowledge and the most recent research results on glycobiology of innate immunology. Innate immunity is the crucial part of the immunological defense system that exerts their distinct functions through binding to certain functional glycoproteins. They play a role in various human diseases and also function against microbial invaders and self-associated molecular patterns. Co-regulated expression of glycan-binding is associated with many biological components such as cellular oncotransformation, phenotype change, neuronal or embryonic development, regulation of cell division, cell–cell interaction, cell attachment, adhesion, and motility, and intracellular signaling via protein–carbohydrate or carbohydrate–carbohydrate interactions. This book opens by providing the key background on glycans in innate immunity and its mechanisms behind the Dendritic cell interactions during infection and inflammation are examined in depth, and the concluding chapter is devoted to signaling tumor immunotherapy. Up-to-date information is then presented on all aspects of glycan structure-recognizing signaling. The book should assist in the further development of new strategies against emerging infectious agents and intractable diseases.




Translational Glycobiology in Human Health and Disease


Book Description

Along with nucleic acids, proteins, and lipids, carbohydrates stand as one of four main components of cellular architecture. However, glycobiology (or carbohydrate bioscience) is little understood by non-experts, partly because carbohydrates are a complex, diverse class of molecules structurally and functionally. In recent years, advances in computational analytics (glycomics) have allowed us to better interpret and realize the importance of glycobiology in human health and disease, and glycans and their associated processes have been shown to play a significant role across a variety of disease types. As the biomedical sciences continue to adopt multi-omic and precision medicine approaches, a greater understanding of glycobiology is essential for maintaining healthy physiology and advancing disease treatment.Translational Glycobiology in Human Health and Disease offers a deep examination of glycobiology for experts and non-experts alike in areas ranging from the role of glycobiology in chronic and infectious diseases to advances in technologies for higher throughput analysis and diagnosis. While keeping human health in the forefront, this book integrates a thorough discussion of glycobiology fundamentals with its growing areas of application and societal impact. With emphasis throughout on the interdisciplinary nature of glycosciences, this book also features perspectives from the health, computational (glycoanalytics), materials, biopharmaceutical, and diagnostic sciences.Disease and speciality areas addressed include gycoimmunology, neuroglycobiology, commensal glycobiology, gut health, regenerative medicine and glycobiology, glycobiology and cancer, congenital disorders of glycosylation, infectious disease glycobiology, and parasite glycobiology. Computational approaches discussed, supporting the advance of new research, include advanced glycoanalytics, glycomics microarrays, glycoengineering, and glycol systems biology. Additionally, authors consider impact areas for society and public health, such as glycobiology and entrepreneurship, policy and regulatory requirements for glycosylation, future research, and translation to new diagnostics and drug discovery. - Provides a deep, foundational overview of glycoscience and its translational potential, highlighting glycobiology's growing role in human health and disease study - Examines a broad range of relevant disease areas and applications of glycobiology in policy and public health - Features chapter contributions from leading, international experts in the field, fully integrating perspectives from the health, computational, materials, biopharmaceutical, and diagnostic sciences







Essentials of Glycobiology


Book Description

Sugar chains (glycans) are often attached to proteins and lipids and have multiple roles in the organization and function of all organisms. "Essentials of Glycobiology" describes their biogenesis and function and offers a useful gateway to the understanding of glycans.




Glycobiology and Human Diseases


Book Description

This book discusses glycobiology and various forms of human diseases. Topics covered include immunoglobulins, inflammation and glycosylation, the role and therapeutic significance of natural anti-glycan antibodies in malignancies and in normal and aberrant pregnancy, identifying urinary glycans as a possible method for the diagnosis of lysosomal st