Computational Structural Biology


Book Description

This is a comprehensive introduction to Landau-Lifshitz equations and Landau-Lifshitz-Maxwell equations, beginning with the work by Yulin Zhou and Boling Guo in the early 1980s and including most of the work done by this Chinese group led by Zhou and Guo since. The book focuses on aspects such as the existence of weak solutions in multi dimensions, existence and uniqueness of smooth solutions in one dimension, relations with harmonic map heat flows, partial regularity and long time behaviors. The book is a valuable reference book for those who are interested in partial differential equations, geometric analysis and mathematical physics. It may also be used as an advanced textbook by graduate students in these fields.




Biomedical Data and Applications


Book Description

Compared with data from general application domains, modern biological data has many unique characteristics. Biological data are often characterized as having large volumes, complex structures, high dimensionality, evolving biological concepts, and insufficient data modelling practices. Over the past several years, bioinformatics has become an all-encompassing term for everything relating to both computer science and biology. The goal of this book is to cover data and applications identifying new issues and directions for future research in biomedical domain. The book will become a useful guide learning state-of-the-art development in biomedical data management, data-intensive bioinformatics systems, and other miscellaneous biological database applications. The book addresses various topics in bioinformatics with varying degrees of balance between biomedical data models and their real-world applications.




Systems Biology and In-Depth Applications for Unlocking Diseases


Book Description

Systems Biology and In-Depth Applications for Unlocking Diseases: Principles, tools and Application to Disease provides the essence of systems biology approaches in a practical manner, illustrating the basic principles essential to develop and model in real life science applications. Methodologies covered show how to interrogate biological data, with the purpose of obtaining insight about disease diagnosis, prognosis, and treatment. Sections provide an introduction and history of systems biology, discuss the tools and resources needed for structure and function of biological systems, and present evidence of systems biology in action. Examples include big data techniques, scale networks, mathematical model development, and much more. This is the perfect reference to provide the fundamental base of knowledge needed for systems biologists, professionals in systems medicine, computational biologists, and bioinformaticians. - Provides detailed and comprehensive coverage of the field of systems biology - Delivers instruction on how to interrogate biological data, with the purpose of obtaining insight about disease diagnosis, prognosis, and treatment - Makes effective steps towards personalized medicine in the treatment of disease - Explains effective disease treatment strategies at early diagnosis stages




Handbook of Research on Systems Biology Applications in Medicine


Book Description

"This book highlights the use of systems approaches including genomic, cellular, proteomic, metabolomic, bioinformatics, molecular, and biochemical, to address fundamental questions in complex diseases like cancer diabetes but also in ageing"--Provided by publisher.




Encyclopedia of Bioinformatics and Computational Biology


Book Description

Encyclopedia of Bioinformatics and Computational Biology: ABC of Bioinformatics, Three Volume Set combines elements of computer science, information technology, mathematics, statistics and biotechnology, providing the methodology and in silico solutions to mine biological data and processes. The book covers Theory, Topics and Applications, with a special focus on Integrative –omics and Systems Biology. The theoretical, methodological underpinnings of BCB, including phylogeny are covered, as are more current areas of focus, such as translational bioinformatics, cheminformatics, and environmental informatics. Finally, Applications provide guidance for commonly asked questions. This major reference work spans basic and cutting-edge methodologies authored by leaders in the field, providing an invaluable resource for students, scientists, professionals in research institutes, and a broad swath of researchers in biotechnology and the biomedical and pharmaceutical industries. Brings together information from computer science, information technology, mathematics, statistics and biotechnology Written and reviewed by leading experts in the field, providing a unique and authoritative resource Focuses on the main theoretical and methodological concepts before expanding on specific topics and applications Includes interactive images, multimedia tools and crosslinking to further resources and databases




Knowledge-Based Intelligent Information and Engineering Systems


Book Description

This book is part of a three-volume set that constitutes the refereed proceedings of the 11th International Conference on Knowledge-Based Intelligent Information and Engineering Systems, KES 2007. Coverage in this first volume includes artificial neural networks and connectionists systems, fuzzy and neuro-fuzzy systems, evolutionary computation, machine learning and classical AI, agent systems, and information engineering and applications in ubiquitous computing environments.




Data Mining


Book Description

Presents the latest techniques for analyzing and extracting information from large amounts of data in high-dimensional data spaces The revised and updated third edition of Data Mining contains in one volume an introduction to a systematic approach to the analysis of large data sets that integrates results from disciplines such as statistics, artificial intelligence, data bases, pattern recognition, and computer visualization. Advances in deep learning technology have opened an entire new spectrum of applications. The author—a noted expert on the topic—explains the basic concepts, models, and methodologies that have been developed in recent years. This new edition introduces and expands on many topics, as well as providing revised sections on software tools and data mining applications. Additional changes include an updated list of references for further study, and an extended list of problems and questions that relate to each chapter.This third edition presents new and expanded information that: • Explores big data and cloud computing • Examines deep learning • Includes information on convolutional neural networks (CNN) • Offers reinforcement learning • Contains semi-supervised learning and S3VM • Reviews model evaluation for unbalanced data Written for graduate students in computer science, computer engineers, and computer information systems professionals, the updated third edition of Data Mining continues to provide an essential guide to the basic principles of the technology and the most recent developments in the field.




Integration of Omics Approaches and Systems Biology for Clinical Applications


Book Description

Introduces readers to the state of the art of omics platforms and all aspects of omics approaches for clinical applications This book presents different high throughput omics platforms used to analyze tissue, plasma, and urine. The reader is introduced to state of the art analytical approaches (sample preparation and instrumentation) related to proteomics, peptidomics, transcriptomics, and metabolomics. In addition, the book highlights innovative approaches using bioinformatics, urine miRNAs, and MALDI tissue imaging in the context of clinical applications. Particular emphasis is put on integration of data generated from these different platforms in order to uncover the molecular landscape of diseases. The relevance of each approach to the clinical setting is explained and future applications for patient monitoring or treatment are discussed. Integration of omics Approaches and Systems Biology for Clinical Applications presents an overview of state of the art omics techniques. These methods are employed in order to obtain the comprehensive molecular profile of biological specimens. In addition, computational tools are used for organizing and integrating these multi-source data towards developing molecular models that reflect the pathophysiology of diseases. Investigation of chronic kidney disease (CKD) and bladder cancer are used as test cases. These represent multi-factorial, highly heterogeneous diseases, and are among the most significant health issues in developed countries with a rapidly aging population. The book presents novel insights on CKD and bladder cancer obtained by omics data integration as an example of the application of systems biology in the clinical setting. Describes a range of state of the art omics analytical platforms Covers all aspects of the systems biology approach—from sample preparation to data integration and bioinformatics analysis Contains specific examples of omics methods applied in the investigation of human diseases (Chronic Kidney Disease, Bladder Cancer) Integration of omics Approaches and Systems Biology for Clinical Applications will appeal to a wide spectrum of scientists including biologists, biotechnologists, biochemists, biophysicists, and bioinformaticians working on the different molecular platforms. It is also an excellent text for students interested in these fields.




Grid Computing for Bioinformatics and Computational Biology


Book Description

The only single, up-to-date source for Grid issues in bioinformatics and biology Bioinformatics is fast emerging as an important discipline for academic research and industrial applications, creating a need for the use of Grid computing techniques for large-scale distributed applications. This book successfully presents Grid algorithms and their real-world applications, provides details on modern and ongoing research, and explores software frameworks that integrate bioinformatics and computational biology. Additional coverage includes: * Bio-ontology and data mining * Data visualization * DNA assembly, clustering, and mapping * Molecular evolution and phylogeny * Gene expression and micro-arrays * Molecular modeling and simulation * Sequence search and alignment * Protein structure prediction * Grid infrastructure, middleware, and tools for bio data Grid Computing for Bioinformatics and Computational Biology is an indispensable resource for professionals in several research and development communities including bioinformatics, computational biology, Grid computing, data mining, and more. It also serves as an ideal textbook for undergraduate- and graduate-level courses in bioinformatics and Grid computing.




Relational Data Mining


Book Description

As the first book devoted to relational data mining, this coherently written multi-author monograph provides a thorough introduction and systematic overview of the area. The first part introduces the reader to the basics and principles of classical knowledge discovery in databases and inductive logic programming; subsequent chapters by leading experts assess the techniques in relational data mining in a principled and comprehensive way; finally, three chapters deal with advanced applications in various fields and refer the reader to resources for relational data mining. This book will become a valuable source of reference for R&D professionals active in relational data mining. Students as well as IT professionals and ambitioned practitioners interested in learning about relational data mining will appreciate the book as a useful text and gentle introduction to this exciting new field.