Structural Chemistry of Silicates


Book Description

As natural minerals, silica and silicates constitute by far the largest part of the earth's crust and mantle. They are equally important as raw materials and as mass produced items. For this reason they have been the subject of scientific research by geoscientists as well as by applied scientists in cement, ceramic, glass, and other industries. Moreover, intensive fun damental research on silicates has been carried out for many years because silicates are, due to their enormous variability, ideally suited for the study of general chemical and crystallographic principles. Several excellent books on mineralogy and cement, ceramics, glass, etc. give brief, usually descriptive synopses of the structure of silicates, but do not contain detailed discussions of their structural chemistry. A number of monographs on special groups of silicates, such as the micas and clay min erals, amphiboles, feldspars, and zeolites have been published which con tain more crystal chemical information. However, no modern text has been published which is devoted to the structural chemistry of silicates as a whole. Within the last 2 decades experimental and theoretical methods have been so much improved to the extent that not only have a large number of silicate structures been accurately determined, but also a better under standing has been obtained of the correlation between the chemical composition of a silicate and its structure. Therefore, the time has been reached when a modern review of the structural chemistry of silicates has become necessary.




Structural Chemistry of Silicates and Related Substances


Book Description

Studies of oriented transformations, and crystal chemistry of oxides are described. Detailed study of the oriented transformations rhodonite to wollastonite provides direct evidence of the migration of Si during thermal transformations of silicates. The results of dry heating and hydrothermal treatment of a variety of other silicates are described. Crystal chemical studies, including a number of RO-R2O3 compounds are in progress. The stability relationships of the calcium gallates are described. (Author).













The Properties of Silica


Book Description




Crystallography and Crystal Chemistry of Materials with Layered Structures


Book Description

In the last ten years, the chemistry and physics of materials with layered structures became an intensively investigated field in the study of the solid state. Research into physical properties of these crystals and especially investigations of their physical anisotropy related to the structural anisotropy has led to remarkable and perplexing results. Most of the layered materials exist in several polytypic modifications and can include stacking faults. The crystal structures are therefore complex and it became apparent that there was a great need for a review of the crystallographic data of materials approximating two-dimensional solids. This second volume in the series 'Physics and Chemistry of Materials with Layered Structures' has been written by specialists of different classes of layered materials. Structural data are reviewed and the most important relations between the structure and the chemical and physical properties are emphasized. The first three contributions are devoted to the transition metal dichalcogenides whose physical properties have been investigated in detail. The crystallographic data and crystal growth conditions are presented in the first paper. The second paper constitutes an incisive review of the phase transformations and charge density waves which have been observed in the metallic dichalcogenides. In two contributions the layered structures of newer ternary compounds are de scribed and the connection between structure and non-stoichiometry is discussed.




Structural-Chemical Systematics of Minerals


Book Description

This book represents new structural-chemical minerals of A.A. Godovikov which reflects the latest data on communication of the chemical composition with structure and properties of minerals, conditions of their formation, their paragenesis. The following features lay its basis: a) the numerous, often not considered earlier chemical signs on which chemical properties of minerals, conditions of their formation or paragenesis may depend; b) the determined consistent patterns of communication between chemical compounds structure and fundamental properties of the elements forming them; c) regularities of structure change and properties of minerals depending on physical and chemical parameters of formation or environment systems. This systematiс considers real associations, differences in physical and chemical parameters at which minerals are forming and existing. In this systematic sometimes the preference is given to the last signs because all natural associations aren't casual in an arrangement of minerals, so they formed as a result of difficult and longtime selection. The properties of minerals are coordinated with their structure, formation conditions. The transition conditions from one taxon to another both at one level and at its deepenings are accurately formulated. The primary type of a chemical bond was accepted as leading sign of five highest taxons. The lowest taxons were allocated on: a) the mineral belongings to izodesmichesky or anizodesmichesky connections; b) the type of anion, cation; c) the coordination number of an anionoobrazovatel; d) the size of CX; e) the type of the structure. The signs which are in the basis for systematization give the chance to find the place for new mineral types in the tables, to change the place of mineral in connection with specification of its formula or structure. They also allow to distinguish new taxons for the new mineral types representing chemical compounds, earlier not known in nature. Thus this systematic is not a stiffened representation but the developing system.




Structure and Chemistry of Crystalline Solids


Book Description

Understandable by anyone concerned with crystals or solid state properties dependent on structure Presents a general system using simple notation to reveal similarities and differences among crystal structures More than 300 selected and prepared figures illustrate structures found in thousands of compounds