Structural Concrete Textbook, Volume 4


Book Description

The second edition of the Structural Concrete Textbook is an extensive revision that reflects advances in knowledge and technology over the past decade. It was prepared in the intermediate period from the CEP-FIP Model Code 1990 (MC90) to fib Model Code for Concrete Structures 2010 (MC2010), and as such incorporates a significant amount of information that has been already finalized for MC2010, while keeping some material from MC90 that was not yet modified considerably. The objective of the textbook is to give detailed information on a wide range of concrete engineering from selection of appropriate structural system and also materials, through design and execution and finally behaviour in use. The revised fib Structural Concrete Textbook covers the following main topics: phases of design process, conceptual design, short and long term properties of conventional concrete (including creep, shrinkage, fatigue and temperature influences), special types of concretes (such as self compacting concrete, architectural concrete, fibre reinforced concrete, high and ultra high performance concrete), properties of reinforcing and prestressing materials, bond, tension stiffening, moment-curvature, confining effect, dowel action, aggregate interlock; structural analysis (with or without time dependent effects), definition of limit states, control of cracking and deformations, design for moment, shear or torsion, buckling, fatigue, anchorages, splices, detailing; design for durability (including service life design aspects, deterioration mechanisms, modelling of deterioration mechanisms, environmental influences, influences of design and execution on durability); fire design (including changes in material and structural properties, spalling, degree of deterioration), member design (linear members and slabs with reinforcement layout, deep beams); management, assessment, maintenance, repair (including, conservation strategies, risk management, types of interventions) as well as aspects of execution (quality assurance), formwork and curing. The updated textbook provides the basics of material and structural behaviour and the fundamental knowledge needed for the design, assessment or retrofitting of concrete structures. It will be essential reading material for graduate students in the field of structural concrete, and also assist designers and consultants in understanding the background to the rules they apply in their practice. Furthermore, it should prove particularly valuable to users of the new editions of Eurocode 2 for concrete buildings, bridges and container structures, which are based only partly on MC90 and partly on more recent knowledge which was not included in the 1999 edition of the textbook.




Structural Concrete Textbook, Volume 4


Book Description

The second edition of the Structural Concrete Textbook is an extensive revision that reflects advances in knowledge and technology over the past decade. It was prepared in the intermediate period from the CEP-FIP Model Code 1990 (MC90) to fib Model Code for Concrete Structures 2010 (MC2010), and as such incorporates a significant amount of information that has been already finalized for MC2010, while keeping some material from MC90 that was not yet modified considerably. The objective of the textbook is to give detailed information on a wide range of concrete engineering from selection of appropriate structural system and also materials, through design and execution and finally behaviour in use. The revised fib Structural Concrete Textbook covers the following main topics: phases of design process, conceptual design, short and long term properties of conventional concrete (including creep, shrinkage, fatigue and temperature influences), special types of concretes (such as self compacting concrete, architectural concrete, fibre reinforced concrete, high and ultra high performance concrete), properties of reinforcing and prestressing materials, bond, tension stiffening, moment-curvature, confining effect, dowel action, aggregate interlock; structural analysis (with or without time dependent effects), definition of limit states, control of cracking and deformations, design for moment, shear or torsion, buckling, fatigue, anchorages, splices, detailing; design for durability (including service life design aspects, deterioration mechanisms, modelling of deterioration mechanisms, environmental influences, influences of design and execution on durability); fire design (including changes in material and structural properties, spalling, degree of deterioration), member design (linear members and slabs with reinforcement layout, deep beams); management, assessment, maintenance, repair (including, conservation strategies, risk management, types of interventions) as well as aspects of execution (quality assurance), formwork and curing. The updated textbook provides the basics of material and structural behaviour and the fundamental knowledge needed for the design, assessment or retrofitting of concrete structures. It will be essential reading material for graduate students in the field of structural concrete, and also assist designers and consultants in understanding the background to the rules they apply in their practice. Furthermore, it should prove particularly valuable to users of the new editions of Eurocode 2 for concrete buildings, bridges and container structures, which are based only partly on MC90 and partly on more recent knowledge which was not included in the 1999 edition of the textbook.




Structural Concrete


Book Description

The popular, easily accessible guide to the design of reinforced concrete structures now updated and revised Structural Concrete, Fifth Edition provides complete guidance to the analysis and design of reinforced and prestressed concrete structures. This new edition brings all material up to date while maintaining the book's practical, logical, easy-to-follow approach. Coverage includes the latest ACI 318 - 11 code rules, emphasizing the code's strength approach and strain limits. Additional codes, standards, and specifications, as well as material properties and specific loads and safety provisions are also examined in detail. Drawing on decades of experience in industry and academia, the authors include numerous SI unit examples and design tables along with step-by-step instructions on how to analyze and design for each type of structural member. They clearly explain all key concepts one should know before tackling design formulas, and supplement the discussion with helpful end-of-chapter summaries, references, and problems. New and updated material in this edition includes: The application of shear design to beams with variable length in actual structure The design of deep beams employing ACI and AASHTO strut-and-tie approach The design of stepped-type reinforced concrete stairs, not covered anywhere else Seismic design and analysis utilizing the IBC 2012 and ASCE 7-10 code The design of curved beams subject to flexure, shear, and torsion Prestressed concrete bridge design according to AASHTO specifications Examples for predicting shrinkage and creep of concrete in both U.S. and SI units Structural Concrete, Fifth Edition arms civil and structural engineers with a complete set of tools for designing concrete structures with confidence. It is also an excellent resource for students of civil engineering.




Concrete Structures


Book Description

This revised, fully updated second edition covers the analysis, design, and construction of reinforced concrete structures from a real-world perspective. It examines different reinforced concrete elements such as slabs, beams, columns, foundations, basement and retaining walls and pre-stressed concrete incorporating the most up-to-date edition of the American Concrete Institute Code (ACI 318-14) requirements for the design of concrete structures. It includes a chapter on metric system in reinforced concrete design and construction. A new chapter on the design of formworks has been added which is of great value to students in the construction engineering programs along with practicing engineers and architects. This second edition also includes a new appendix with color images illustrating various concrete construction practices, and well-designed buildings. The ACI 318-14 constitutes the most extensive reorganization of the code in the past 40 years. References to the various sections of the ACI 318-14 are provided throughout the book to facilitate its use by students and professionals. Aimed at architecture, building construction, and undergraduate engineering students, the scope of concepts in this volume emphasize simplified and practical methods in the analysis and design of reinforced concrete. This is distinct from advanced, graduate engineering texts, where treatment of the subject centers around the theoretical and mathematical aspects of design. As in the first edition, this book adopts a step-by-step approach to solving analysis and design problems in reinforced concrete. Using a highly graphical and interactive approach in its use of detailed images and self-experimentation exercises, “Concrete Structures, Second Edition,” is tailored to the most practical questions and fundamental concepts of design of structures in reinforced concrete. The text stands as an ideal learning resource for civil engineering, building construction, and architecture students as well as a valuable reference for concrete structural design professionals in practice.




Structural Concrete Textbook, Volume 5


Book Description

The third edition of the Structural Concrete Textbook is an extensive revision that reflects advances in knowledge and technology over the past decade. It was prepared in the intermediate period from the CEP-FIP Model Code 1990 (MC90) tofib Model Code for Concrete Structures 2010 (MC2010), and as such incorporates a significant amount of information that has been already finalized for MC2010, while keeping some material from MC90 that was not yet modified considerably. The objective of the textbook is to give detailed information on a wide range of concrete engineering from selection of appropriate structural system and also materials, through design and execution and finally behaviour in use. The revised fib Structural Concrete Textbook covers the following main topics: phases of design process, conceptual design, short and long term properties of conventional concrete (including creep, shrinkage, fatigue and temperature influences), special types of concretes (such as self compacting concrete, architectural concrete, fibre reinforced concrete, high and ultra high performance concrete), properties of reinforcing and prestressing materials, bond, tension stiffening, moment-curvature, confining effect, dowel action, aggregate interlock; structural analysis (with or without time dependent effects), definition of limit states, control of cracking and deformations, design for moment, shear or torsion, buckling, fatigue, anchorages, splices, detailing; design for durability (including service life design aspects, deterioration mechanisms, modelling of deterioration mechanisms, environmental influences, influences of design and execution on durability); fire design (including changes in material and structural properties, spalling, degree of deterioration), member design (linear members and slabs with reinforcement layout, deep beams); management, assessment, maintenance, repair (including, conservation strategies, risk management, types of interventions) as well as aspects of execution (quality assurance), formwork and curing. The updated textbook provides the basics of material and structural behaviour and the fundamental knowledge needed for the design, assessment or retrofitting of concrete structures. It will be essential reading material for graduate students in the field of structural concrete, and also assist designers and consultants in understanding the background to the rules they apply in their practice. Furthermore, it should prove particularly valuable to users of the new editions of Eurocode 2 for concrete buildings, bridges and container structures, which are based only partly on MC90 and partly on more recent knowledge which was not included in the 1999 edition of the textbook.




fib Model Code for Concrete Structures 2010


Book Description

The International Federation for Structural Concrete (fib) is a pre-normative organization. 'Pre-normative' implies pioneering work in codification. This work has now been realized with the fib Model Code 2010. The objectives of the fib Model Code 2010 are to serve as a basis for future codes for concrete structures, and present new developments with regard to concrete structures, structural materials and new ideas in order to achieve optimum behaviour. The fib Model Code 2010 is now the most comprehensive code on concrete structures, including their complete life cycle: conceptual design, dimensioning, construction, conservation and dismantlement. It is expected to become an important document for both national and international code committees, practitioners and researchers. The fib Model Code 2010 was produced during the last ten years through an exceptional effort by Joost Walraven (Convener; Delft University of Technology, The Netherlands), Agnieszka Bigaj-van Vliet (Technical Secretary; TNO Built Environment and Geosciences, The Netherlands) as well as experts out of 44 countries from five continents.




Precast Concrete Structures


Book Description

Building with precast concrete elements is one of the most innovative forms of construction. This book serves as an introduction to this topic, including examples, and thus supplies all the information necessary for conceptual and detailed design.




Structural Concrete


Book Description

Structural Concrete discusses the design and analysis of reinforced and prestressed concrete structural components and structures. Each of the eight chapters of the book tackles a specific area of concern in structural concrete. The text first deals with the serviceability and safety, and then proceeds to the properties of materials and mix designs. The next two chapters cover reinforced concrete beams and slabs. Chapter 5 discusses column and walls, while Chapter 6 tackles reinforced concrete frames and continuous beams and slabs. The next chapter discusses design structures, while the last chapter covers prestressed concrete. The text will be of great use to undergraduate students of civil and structural engineering. Professionals whose work involves concrete technology will also find the book useful.




Fibre-reinforced concrete:From design to structural applications


Book Description

The FRC-2014 Workshop Fibre Reinforced Concrete: from Design to Structural Applications was the first ACI-fib joint technical event. The Workshop, held at Polytechnique Montreal (Canada) on July 24th and 25th 2014, was attended by 116 participants from 25 countries and 4 continents. The first international FRC workshop was held in Bergamo (Italy) in 2004. At that time, the lack of specific building codes and standards was identified as the main inhibitor to the application of this technology in engineering practice. Ten years after Bergamo, many of the objectives identified at that time have been achieved. The use of fibre reinforced concrete (FRC) for designing structural members in bending and shear has recently been addressed in the fib Model Code 2010. Steel fibre reinforced concrete (SFRC) has also been used structurally in several building and bridge projects in Europe and North-America. SFRC has been widely used in segmental tunnel linings all over the world. Members of ACI544 and fib TG-4.1 have been involved in writing code based specifications for the design of FRC structural members. More than fifty papers were presented at the Workshop from which forty-four were selected for this joint ACI/fib publication. The papers are organised in the document under six themes: Design guidelines and specifications, Material properties for design, Behaviour and design of beams and columns, Behaviour and design of slabs and other structures, Behaviour and design of foundations and underground components, and finally, Applications in structure and underground construction projects.




Precast tunnel segments in fibre-reinforced concrete


Book Description

With the publication of this bulletin, fib Commission 1 is initiating a new series of documents related to the use of structural concrete in underground construction, where structural concrete plays a major and increasingly important role. The usage of underground space is more than ever a key issue of urban planning and fib decided to start addressing the issues related to the design and construction of concrete structures in this particular environment. In this context one the most significant applications of structural concrete is tunnel lining, for which the properties of reinforced concrete are particularly well suited through compressive strength, water tightness, ductility, and durability. Reinforced concrete tunnels linings have mostly been traditionally cast in situ, but the development of Tunnel Boring Machines has lead to the invention of precast concrete segmental lining technology, which is nowadays one of the most promising applications of Fibre Reinforced Concrete (FRC). Thanks to the courage and dedication of innovative designers and contractors, a number of large tunnels have already been built around the World with FRC precast linings, and this report presents the experience acquired with these projects, and also provides guidance about the way to apply 2010 fib Model Code recommendations on FRC to these structures. The main drivers of this evolution from RC to FRC are a better ductility, more durability, and easier fabrication and construction process. As Commission 1 chair, I am very grateful to Alberto Meda and to all members of this task group for opening the way to this new field of underground structures within our commission, and to have efficiently produced a document that will be useful to our members and to the construction community around the World.