Structural Dynamics Fundamentals and Advanced Applications, Volume II


Book Description

The two-volume Structural Dynamics Fundamentals and Advanced Applications is a comprehensive work that encompasses the fundamentals of structural dynamics and vibration analysis, as well as advanced applications used on extremely large and complex systems. In Volume II, d’Alembert’s Principle, Hamilton’s Principle, and Lagrange’s Equations are derived from fundamental principles. Development of large structural dynamic models and fluid/structure interaction are thoroughly covered. Responses to turbulence/gust, buffet, and static-aeroelastic loading encountered during atmospheric flight are addressed from fundamental principles to the final equations, including aeroelasticity. Volume II also includes a detailed discussion of mode survey testing, mode parameter identification, and analytical model adjustment. Analysis of time signals, including digitization, filtering, and transform computation is also covered. A comprehensive discussion of probability and statistics, including statistics of time series, small sample statistics, and the combination of responses whose statistical distributions are different, is included. Volume II concludes with an extensive chapter on continuous systems; including the classical derivations and solutions for strings, membranes, beams, and plates, as well as the derivation and closed form solutions for rotating disks and sloshing of fluids in rectangular and cylindrical tanks. Dr. Kabe’s training and expertise are in structural dynamics and Dr. Sako’s are in applied mathematics. Their collaboration has led to the development of first-of-a-kind methodologies and solutions to complex structural dynamics problems. Their experience and contributions encompass numerous past and currently operational launch and space systems. The two-volume work was written with both practicing engineers and students just learning structural dynamics in mind Derivations are rigorous and comprehensive, thus making understanding the material easier Presents analysis methodologies adopted by the aerospace community to solve complex structural dynamics problems




Structural Dynamics Fundamentals and Advanced Applications, Volume I


Book Description

The two-volume work, Structural Dynamics Fundamentals and Advanced Applications, is a comprehensive work that encompasses the fundamentals of structural dynamics and vibration analysis, as well as advanced applications used on extremely large and complex systems. Volume I covers Newton's Laws, single-degree-of-freedom systems, damping, transfer and frequency response functions, transient vibration analysis (frequency and time domain), multi-degree-of-freedom systems, forced vibration of single and multi-degree-of-freedom systems, numerical methods for solving for the responses of single and multi-degree-of-freedom systems, and symmetric and non-symmetric eigenvalue problems. In addition, a thorough discussion of real and complex modes, and the conditions that lead to each is included. Stochastic methods for single and multi-degree-of-freedom systems excited by random forces or base motion are also covered. Dr. Kabe's training and expertise are in structural dynamics and Dr. Sako's are in applied mathematics. Their collaboration has led to the development of first-of-a-kind methodologies and solutions to complex structural dynamics problems. Their experience and contributions encompass numerous past and currently operational launch and space systems. - The two-volume work was written with both practicing engineers and students just learning structural dynamics in mind - Derivations are rigorous and comprehensive, thus making understanding the material easier - Presents analysis methodologies adopted by the aerospace community to solve extremely complex structural dynamics problems




Advanced Structural Dynamics and Active Control of Structures


Book Description

Science is for those who learn; poetry for those who know. —Joseph Roux This book is a continuation of my previous book, Dynamics and Control of Structures [44]. The expanded book includes three additional chapters and an additional appendix: Chapter 3, “Special Models”; Chapter 8, “Modal Actuators and Sensors”; and Chapter 9, “System Identification. ” Other chapters have been significantly revised and supplemented with new topics, including discrete-time models of structures, limited-time and -frequency grammians and reduction, almo- balanced modal models, simultaneous placement of sensors and actuators, and structural damage detection. The appendices have also been updated and expanded. Appendix A consists of thirteen new Matlab programs. Appendix B is a new addition and includes eleven Matlab programs that solve examples from each chapter. In Appendix C model data are given. Several books on structural dynamics and control have been published. Meirovitch’s textbook [108] covers methods of structural dynamics (virtual work, d’Alambert’s principle, Hamilton’s principle, Lagrange’s and Hamilton’s equations, and modal analysis of structures) and control (pole placement methods, LQG design, and modal control). Ewins’s book [33] presents methods of modal testing of structures. Natke’s book [111] on structural identification also contains excellent material on structural dynamics. Fuller, Elliot, and Nelson [40] cover problems of structural active control and structural acoustic control.




Fundamentals of Structural Dynamics


Book Description

FUNDAMENTALS OF STRUCTURAL DYNAMICS From theory and fundamentals to the latest advances in computational and experimental modal analysis, this is the definitive, updated reference on structural dynamics. This edition updates Professor Craig’s classic introduction to structural dynamics, which has been an invaluable resource for practicing engineers and a textbook for undergraduate and graduate courses in vibrations and/or structural dynamics. Along with comprehensive coverage of structural dynamics fundamentals, finite-element–based computational methods, and dynamic testing methods, this Second Edition includes new and expanded coverage of computational methods, as well as introductions to more advanced topics, including experimental modal analysis and “active structures.” With a systematic approach, it presents solution techniques that apply to various engineering disciplines. It discusses single degree-of-freedom (SDOF) systems, multiple degrees-of-freedom (MDOF) systems, and continuous systems in depth; and includes numeric evaluation of modes and frequency of MDOF systems; direct integration methods for dynamic response of SDOF systems and MDOF systems; and component mode synthesis. Numerous illustrative examples help engineers apply the techniques and methods to challenges they face in the real world. MATLAB® is extensively used throughout the book, and many of the .m-files are made available on the book’s Web site. Fundamentals of Structural Dynamics, Second Edition is an indispensable reference and “refresher course” for engineering professionals; and a textbook for seniors or graduate students in mechanical engineering, civil engineering, engineering mechanics, or aerospace engineering.




Structural Dynamics


Book Description

Written by two experts across multiple disciplines, this is the perfect reference on structural dynamics for veteran engineers and introduction to the field for engineering students. Across many disciplines of engineering, dynamic problems of structures are a primary concern. Civil engineers, mechanical engineers, aircraft engineers, ocean engineers, and engineering students encounter these problems every day, and it is up to them systematically to grasp the basic concepts, calculation principles and calculation methods of structural dynamics. This book focuses on the basic theories and concepts, as well as the application and background of theories and concepts in engineering. Since the basic principles and methods of dynamics are applied to other various engineering fields, this book can also be used as a reference for practicing engineers in the field across many multiple disciplines and for undergraduate and graduate students in other majors as well. The main contents include basic theory of dynamics, establishment of equation of motion, single degree of freedom systems, multi-degree of freedom systems, distributed-parameter systems, stochastic structural vibrations, research projects of structural dynamics, and structural dynamics of marine pipeline and risers. Whether for the veteran engineer or student, this is a must-have for any scientific or engineering library. Useful for students and veteran engineers and scientists alike, this is the only book covering these important issues facing anyone working with coastal models and ocean, coastal, and civil engineering in this area.




Fundamentals of Structural Dynamics


Book Description

This text closes the gap between traditional textbooks on structural dynamics and how structural dynamics is practiced in a world driven by commercial software, where performance-based design is increasingly important. The book emphasizes numerical methods, nonlinear response of structures, and the analysis of continuous systems (e.g., wave propagation). Fundamentals of Structural Dynamics: Theory and Computation builds the theory of structural dynamics from simple single-degree-of-freedom systems through complex nonlinear beams and frames in a consistent theoretical context supported by an extensive set of MATLAB codes that not only illustrate and support the principles, but provide powerful tools for exploration. The book is designed for students learning structural dynamics for the first time but also serves as a reference for professionals throughout their careers.




Advanced Structural Dynamics


Book Description

Developed from three decades' worth of lecture notes which the author used to teach at the Massachusetts Institute of Technology, this unique textbook presents a comprehensive treatment of structural dynamics and mechanical vibration. The chapters in this book are self-contained so that instructors can choose to be selective about which topics they teach. Written with an application-based focus, the text covers topics such as earthquake engineering, soil dynamics, and relevant numerical methods techniques that use MATLAB. Advanced topics such as the Hilbert transform, gyroscope forces, and spatially periodic structures are also treated extensively. Concise enough for an introductory course yet rigorous enough for an advanced or graduate-level course, this textbook is also a useful reference manual - even after the final exam - for professional and practicing engineers.




Structural Dynamics


Book Description

Structural Dynamics: Concepts and Applications focuses on dynamic problems in mechanical, civil and aerospace engineering through the equations of motion. The text explains structural response from dynamic loads and the modeling and calculation of dynamic responses in structural systems. A range of applications is included, from various engineering disciplines. Coverage progresses consistently from basic to advanced, with emphasis placed on analytical methods and numerical solution techniques. Stress analysis is discussed, and MATLAB applications are integrated throughout. A solutions manual and figure slides for classroom projection are available for instructors.




Topics in Modal Analysis & Parameter Identification, Volume 9


Book Description

Topics in Modal Analysis, Testing & Parameter Identification, Volume 9: Proceedings of the 41st IMAC, A Conference and Exposition on Structural Dynamics, 2023, the ninth volume of ten from the Conference brings together contributions to this important area of research and engineering. The collection presents early findings and case studies on fundamental and applied aspects of Modal Analysis, Modal Testing and Modal Parameter Identification including papers on: Analytical Methods Modal Applications Basics of Modal Analysis Experimental Techniques Operational Modal Analysis Modal Parameter Identification Novel Techniques Rotating Machinery Additive Manufacturing Applications Biomedical Applications




Structural Optimization


Book Description

Today’s biggest structural engineering challenge is to design better structures, and a key issue is the need to take an integrated approach which balances control of costs with the requirement for handling earthquakes and other dynamic forces. Structural optimization is based on rigorous mathematical formulation and requires computation algorithms for sizing structural elements and synthesizing systems. Now that the right software and enough computing power are readily available, professionals can now develop a suite of alternative designs and a select suitable one. A thoroughly-written and practical book on structural optimization is long overdue. This solid book comprehensively presents current optimization strategies, illustrated with sufficient examples of the design of elements and systems and presenting descriptions of the process and results. Emphasis is given to dynamic loading, in particular to seismic forces. Researchers and practising engineers will find this book an excellent reference, and advanced undergraduates or graduate students can use it as a resource for structural optimization design.