Structural Genomics on Membrane Proteins


Book Description

While the genomic revolution has quickly led to the deposit of more than 30,000 structures in the protein data bank (PDB), less than one percent of those contributions represent membrane proteins despite the fact that membrane proteins constitute some 20 percent of all proteins. This discrepancy becomes significantly troublesome when it is coupled with the fact that 60 percent of current drugs are based on targeting this group of proteins, a trend that does not seem likely to reverse. Structural Genomics on Membrane Proteins provides an excellent overview on novel research in bioinformatics and modeling on membranes, as well as the latest technological developments being employed in expression, purification, and crystallography to obtain high-resolution structures on membrane proteins. This cutting-edge work also explains the difficulties facing researchers—both technical and ethical—that have slowed the process. Structural Genomics on Membrane Proteins provides researchers with an unprecedented look at the novel technologies that will ultimately allow them to conquer the last frontier in structural biology, leading to accelerated breakthroughs in drug discovery.







Protein Bioinformatics


Book Description

One of the most pressing tasks in biotechnology today is to unlock the function of each of the thousands of new genes identified every day. Scientists do this by analyzing and interpreting proteins, which are considered the task force of a gene. This single source reference covers all aspects of proteins, explaining fundamentals, synthesizing the latest literature, and demonstrating the most important bioinformatics tools available today for protein analysis, interpretation and prediction. Students and researchers of biotechnology, bioinformatics, proteomics, protein engineering, biophysics, computational biology, molecular modeling, and drug design will find this a ready reference for staying current and productive in this fast evolving interdisciplinary field. - Explains all aspects of proteins including sequence and structure analysis, prediction of protein structures, protein folding, protein stability, and protein interactions - Presents a cohesive and accessible overview of the field, using illustrations to explain key concepts and detailed exercises for students.




From Protein Structure to Function with Bioinformatics


Book Description

Proteins lie at the heart of almost all biological processes and have an incredibly wide range of activities. Central to the function of all proteins is their ability to adopt, stably or sometimes transiently, structures that allow for interaction with other molecules. An understanding of the structure of a protein can therefore lead us to a much improved picture of its molecular function. This realisation has been a prime motivation of recent Structural Genomics projects, involving large-scale experimental determination of protein structures, often those of proteins about which little is known of function. These initiatives have, in turn, stimulated the massive development of novel methods for prediction of protein function from structure. Since model structures may also take advantage of new function prediction algorithms, the first part of the book deals with the various ways in which protein structures may be predicted or inferred, including specific treatment of membrane and intrinsically disordered proteins. A detailed consideration of current structure-based function prediction methodologies forms the second part of this book, which concludes with two chapters, focusing specifically on case studies, designed to illustrate the real-world application of these methods. With bang up-to-date texts from world experts, and abundant links to publicly available resources, this book will be invaluable to anyone who studies proteins and the endlessly fascinating relationship between their structure and function.




Structural Proteomics and Its Impact on the Life Sciences


Book Description

The role played by structural proteomics in the first decade of the 21st century is equivalent to that played by the Human Genome Project in the last decade of the 20th century. The development of high-throughput technologies that permit the solution of hundreds of 3D structures of individual proteins, proteinOCoprotein complexes and proteinOCodrug complexes, just by one laboratory in a single year, will provide a knowledge base which will change the face of structural biology. This will have an immediate influence on medicinal chemistry and molecular pharmacology, as well as an increasing impact on such disciplines as neurobiology, developmental biology, immunology and molecular medicine.This book presents a state-of-the-art overview of the structural proteomics field, ranging from policy issues related to funding and goals, through the high-throughput procedures for protein production, to the solution of the structures of proteins and higher-order entities, via a multidisciplinary approach involving molecular biology, X-ray crystallography, NMR and electron microscopy, as well as bioinformatics analysis. This is the first book to provide such a comprehensive coverage of a rapidly evolving field.




Structural Genomics on Membrane Proteins


Book Description

While the genomic revolution has quickly led to the deposit of more than 30,000 structures in the protein data bank (PDB), less than one percent of those contributions represent membrane proteins despite the fact that membrane proteins constitute some 20 percent of all proteins. This discrepancy becomes significantly troublesome when it is coupled







Fundamentals of Molecular Structural Biology


Book Description

Fundamentals of Molecular Structural Biology reviews the mathematical and physical foundations of molecular structural biology. Based on these fundamental concepts, it then describes molecular structure and explains basic genetic mechanisms. Given the increasingly interdisciplinary nature of research, early career researchers and those shifting into an adjacent field often require a "fundamentals" book to get them up-to-speed on the foundations of a particular field. This book fills that niche.




Structural Proteomics


Book Description

This updated and expanded volume reflects the current state of the structural protein field with improved and refined protocols that have been applied to particularly challenging proteins, notably integral membrane proteins and multi-protein complexes. Structural Proteomics: High-Throughput Methods, Second Edition begins by exploring the resources available for curation, annotation, and structure prediction in silico, and continues with methods for sample preparation of both proteins and crystals, as well as structural characterization techniques. Written for the highly successful Methods in Molecular Biology series, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Practical and up-to-date, Structural Proteomics: High-Throughput Methods, Second Edition will aid researchers in expanding our knowledge of this vital and expansive area of protein science.




Structural Biology in Drug Discovery


Book Description

With the most comprehensive and up-to-date overview of structure-based drug discovery covering both experimental and computational approaches, Structural Biology in Drug Discovery: Methods, Techniques, and Practices describes principles, methods, applications, and emerging paradigms of structural biology as a tool for more efficient drug development. Coverage includes successful examples, academic and industry insights, novel concepts, and advances in a rapidly evolving field. The combined chapters, by authors writing from the frontlines of structural biology and drug discovery, give readers a valuable reference and resource that: Presents the benefits, limitations, and potentiality of major techniques in the field such as X-ray crystallography, NMR, neutron crystallography, cryo-EM, mass spectrometry and other biophysical techniques, and computational structural biology Includes detailed chapters on druggability, allostery, complementary use of thermodynamic and kinetic information, and powerful approaches such as structural chemogenomics and fragment-based drug design Emphasizes the need for the in-depth biophysical characterization of protein targets as well as of therapeutic proteins, and for a thorough quality assessment of experimental structures Illustrates advances in the field of established therapeutic targets like kinases, serine proteinases, GPCRs, and epigenetic proteins, and of more challenging ones like protein-protein interactions and intrinsically disordered proteins