Structural Proteomics and Its Impact on the Life Sciences


Book Description

The role played by structural proteomics in the first decade of the 21st century is equivalent to that played by the Human Genome Project in the last decade of the 20th century. The development of high-throughput technologies that permit the solution of hundreds of 3D structures of individual proteins, proteinOCoprotein complexes and proteinOCodrug complexes, just by one laboratory in a single year, will provide a knowledge base which will change the face of structural biology. This will have an immediate influence on medicinal chemistry and molecular pharmacology, as well as an increasing impact on such disciplines as neurobiology, developmental biology, immunology and molecular medicine.This book presents a state-of-the-art overview of the structural proteomics field, ranging from policy issues related to funding and goals, through the high-throughput procedures for protein production, to the solution of the structures of proteins and higher-order entities, via a multidisciplinary approach involving molecular biology, X-ray crystallography, NMR and electron microscopy, as well as bioinformatics analysis. This is the first book to provide such a comprehensive coverage of a rapidly evolving field.




Structural Proteomics and Its Impact on the Life Sciences


Book Description

Ranging from policy issues related to funding and goals, through high-throughput procedures for protein production, this text presents an overview of structural proteomics via a multidisciplinary approach involving molecular biology.




Structural Proteomics


Book Description

This updated and expanded volume reflects the current state of the structural protein field with improved and refined protocols that have been applied to particularly challenging proteins, notably integral membrane proteins and multi-protein complexes. Structural Proteomics: High-Throughput Methods, Second Edition begins by exploring the resources available for curation, annotation, and structure prediction in silico, and continues with methods for sample preparation of both proteins and crystals, as well as structural characterization techniques. Written for the highly successful Methods in Molecular Biology series, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Practical and up-to-date, Structural Proteomics: High-Throughput Methods, Second Edition will aid researchers in expanding our knowledge of this vital and expansive area of protein science.




Proteomic and Metabolomic Approaches to Biomarker Discovery


Book Description

Proteomic and Metabolomic Approaches to Biomarker Discovery demonstrates how to leverage biomarkers to improve accuracy and reduce errors in research. Disease biomarker discovery is one of the most vibrant and important areas of research today, as the identification of reliable biomarkers has an enormous impact on disease diagnosis, selection of treatment regimens, and therapeutic monitoring. Various techniques are used in the biomarker discovery process, including techniques used in proteomics, the study of the proteins that make up an organism, and metabolomics, the study of chemical fingerprints created from cellular processes. Proteomic and Metabolomic Approaches to Biomarker Discovery is the only publication that covers techniques from both proteomics and metabolomics and includes all steps involved in biomarker discovery, from study design to study execution. The book describes methods, and presents a standard operating procedure for sample selection, preparation, and storage, as well as data analysis and modeling. This new standard effectively eliminates the differing methodologies used in studies and creates a unified approach. Readers will learn the advantages and disadvantages of the various techniques discussed, as well as potential difficulties inherent to all steps in the biomarker discovery process. A vital resource for biochemists, biologists, analytical chemists, bioanalytical chemists, clinical and medical technicians, researchers in pharmaceuticals, and graduate students, Proteomic and Metabolomic Approaches to Biomarker Discovery provides the information needed to reduce clinical error in the execution of research. - Describes the use of biomarkers to reduce clinical errors in research - Includes techniques from a range of biomarker discoveries - Covers all steps involved in biomarker discovery, from study design to study execution




Evolution of Translational Omics


Book Description

Technologies collectively called omics enable simultaneous measurement of an enormous number of biomolecules; for example, genomics investigates thousands of DNA sequences, and proteomics examines large numbers of proteins. Scientists are using these technologies to develop innovative tests to detect disease and to predict a patient's likelihood of responding to specific drugs. Following a recent case involving premature use of omics-based tests in cancer clinical trials at Duke University, the NCI requested that the IOM establish a committee to recommend ways to strengthen omics-based test development and evaluation. This report identifies best practices to enhance development, evaluation, and translation of omics-based tests while simultaneously reinforcing steps to ensure that these tests are appropriately assessed for scientific validity before they are used to guide patient treatment in clinical trials.




Bioinformatics in Rice Research


Book Description

This book provides an up-to-date review of classic and advanced bioinformatics approaches and their utility in rice research. It summarizes databases and tools for analyzing DNA, proteins and gene expression profiles, mapping genetic variations, annotation of protein and RNA molecules, phylogenetic analysis, and pathway enrichment. In addition, it presents high-throughput technologies that are widely used to provide deep insights into the genetic architecture of important traits in the rice genome. The book subsequently discusses techniques for identifying RNA-protein, DNA-protein interactions, and molecular markers, including SNP and microsatellites, in the contexts of rice breeding and genetics. Lastly, it explores various tools that are used to identify and characterize non-coding RNA in rice and their potential role in rice research.







Reaping the Benefits of Genomic and Proteomic Research


Book Description

The patenting and licensing of human genetic material and proteins represents an extension of intellectual property (IP) rights to naturally occurring biological material and scientific information, much of it well upstream of drugs and other disease therapies. This report concludes that IP restrictions rarely impose significant burdens on biomedical research, but there are reasons to be apprehensive about their future impact on scientific advances in this area. The report recommends 13 actions that policy-makers, courts, universities, and health and patent officials should take to prevent the increasingly complex web of IP protections from getting in the way of potential breakthroughs in genomic and proteomic research. It endorses the National Institutes of Health guidelines for technology licensing, data sharing, and research material exchanges and says that oversight of compliance should be strengthened. It recommends enactment of a statutory exception from infringement liability for research on a patented invention and raising the bar somewhat to qualify for a patent on upstream research discoveries in biotechnology. With respect to genetic diagnostic tests to detect patient mutations associated with certain diseases, the report urges patent holders to allow others to perform the tests for purposes of verifying the results.




Structural Bioinformatics


Book Description

Structural Bioinformatics was the first major effort to show the application of the principles and basic knowledge of the larger field of bioinformatics to questions focusing on macromolecular structure, such as the prediction of protein structure and how proteins carry out cellular functions, and how the application of bioinformatics to these life science issues can improve healthcare by accelerating drug discovery and development. Designed primarily as a reference, the first edition nevertheless saw widespread use as a textbook in graduate and undergraduate university courses dealing with the theories and associated algorithms, resources, and tools used in the analysis, prediction, and theoretical underpinnings of DNA, RNA, and proteins. This new edition contains not only thorough updates of the advances in structural bioinformatics since publication of the first edition, but also features eleven new chapters dealing with frontier areas of high scientific impact, including: sampling and search techniques; use of mass spectrometry; genome functional annotation; and much more. Offering detailed coverage for practitioners while remaining accessible to the novice, Structural Bioinformatics, Second Edition is a valuable resource and an excellent textbook for a range of readers in the bioinformatics and advanced biology fields. Praise for the previous edition: "This book is a gold mine of fundamental and practical information in an area not previously well represented in book form." —Biochemistry and Molecular Education "... destined to become a classic reference work for workers at all levels in structural bioinformatics...recommended with great enthusiasm for educators, researchers, and graduate students." —BAMBED "...a useful and timely summary of a rapidly expanding field." —Nature Structural Biology "...a terrific job in this timely creation of a compilation of articles that appropriately addresses this issue." —Briefings in Bioinformatics




Introducing Proteomics


Book Description

Introducing Proteomics gives a concise and coherent overview of every aspect of current proteomics technology, which is a rapidly developing field that is having a major impact within the life and medical sciences. This student-friendly book, based on a successful course developed by the author, provides its readers with sufficient theoretical background to be able to plan, prepare, and analyze a proteomics study. The text covers the following: Separation Technologies Analysis of Peptides/Proteins by Mass Spectrometry Strategies in Proteomics This contemporary text also includes numerous examples and explanations for why particular strategies are better than others for certain applications. In addition, Introducing Proteomics includes extensive references and a list of relevant proteomics information sources; essential for any student. This no-nonsense approach to the subject tells students exactly what they need to know, leaving out unnecessary information. The student companion site enhances learning and provides answers to the end of chapter problems. "I think this book will be a popular and valuable resource for students and newcomers to the field who would like to have an overview and initial understanding of what proteomics is about. The contents are well organized and address the major issues." —Professor Walter Kolch, Director, Systems Biology Ireland & Conway Institute, University College Dublin Companion Website www.wiley.com/go/lovric