Structure and Dynamics of Atoms and Molecules: Conceptual Trends


Book Description

The rivers run into the sea, yet the sea is not full Ecclesiastes What is quantum chemistry? The straightforward answer is that it is what quan tum chemists do. But it must be admitted, that in contrast to physicists and chemists, "quantum chemists" seem to be a rather ill-defined category of scientists. Quantum chemists are more or less physicists (basically theoreticians), more or less chemists, and by and large, computationists. But first and foremost, we, quantum chemists, are conscious beings. We may safely guess that quantum chemistry was one of the first areas in the natural sciences to lie on the boundaries of many disciplines. We may certainly claim that quantum chemists were the first to use computers for really large scale calculations. The scope of the problems which quantum chemistry wishes to answer and which, by its unique nature, only quantum chemistry can answer is growing daily. Retrospectively we may guess that many of those problems meet a daily need, or are say, technical in some sense. The rest are fundamental or conceptual. The daily life of most quantum chemists is usually filled with grasping the more or less technical problems. But it is at least as important to devote some time to the other kind of problems whose solution will open up new perspectives for both quantum chemistry itself and for the natural sciences in general.







Quantum Chemistry


Book Description

`Quantum Chemistry [the branch of Computational Chemistry that applies the laws of Quantum Mechanics to chemical systems] is one of the most dynamic fields of contemporary chemistry, providing a solid foundation for all of chemistry, and serving as the basis for practical, computational methodologies with applications in virtually all branches of chemistry ... The increased sophistication, accuracy and scope of the theory of chemistry are due to a large extent to the spectacular development of quantum chemistry, and in this book the authors have made a remarkable effort to provide a modern account of the field.' From the Foreword by Paul Mezey, University of Saskatchewan. Quantum Chemistry: Fundamentals to Applications develops quantum chemistry all the way from the fundamentals, found in Part I, through the applications that make up Part II. The applications include: molecular structure; spectroscopy; thermodynamics; chemical reactions; solvent effects; and excited state chemistry. The importance of this field is underscored by the fact that the 1998 Nobel Prize in Chemistry was awarded for the development of Quantum Chemistry.




Conceptual Perspectives in Quantum Chemistry


Book Description

The rivers run into the sea, yet the sea is not full Ecclesiastes What is quantum chemistry? The straightforward answer is that it is what quan tum chemists do. But it must be admitted, that in contrast to physicists and chemists, "quantum chemists" seem to be a rather ill-defined category of scientists. Quantum chemists are more or less physicists (basically theoreticians), more or less chemists, and by large, computationists. But first and foremost, we, quantum chemists; are conscious beings. We may safely guess that quantum chemistry was one of the first areas in the natural sciences to lie on the boundaries of many disciplines. We may certainly claim that quantum chemists were the first to use computers for really large scale calculations. The scope of the problems which quantum chemistry wishes to answer and which, by its unique nature, only quantum chemistry can answer is growing daily. Retrospectively we may guess that many of those problems meet a daily need, or are say, technical in some sense. The rest are fundamental or conceptual. The daily life of most quantum chemists is usually filled with grasping the more or less technical problems. But it is at least as important to devote some time to the other kind of problems whose solution will open up new perspectives for both quantum chemistry itself and for the natural sciences in general.




Fundamental World of Quantum Chemistry


Book Description

Per-Olov Löwdin's stature has been a symbol of the world of quantum theory during the past five decades, through his basic contributions to the development of the conceptual framework of Quantum Chemistry and introduction of the fundamental concepts; through a staggering number of regular summer schools, winter institutes, innumerable lectures at Uppsala, Gainesville and elsewhere, and Sanibel Symposia; by founding the International Journal of Quantum Chemistry and Advances in Quantum Chemistry; and through his vision of the possible and his optimism for the future, which has inspired generations of physicists, chemists, mathematicians, and biologists to devote their lives to molecular electronic theory and dynamics, solid state, and quantum biology. Fundamental World of Quantum Chemistry: Volumes I, II and III form a collection of papers dedicated to the memory of Per-Olov Löwdin. These volumes are of interest to a broad audience of quantum, theoretical, physical, biological, and computational chemists; atomic, molecular, and condensed matter physicists; biophysicists; mathematicians working in many-body theory; and historians and philosophers of natural science.




Fundamental World of Quantum Chemistry


Book Description

Per-Olov Löwdin's stature has been a symbol of the world of quantum theory during the past five decades, through his basic contributions to the development of the conceptual framework of Quantum Chemistry and introduction of the fundamental concepts; through a staggering number of regular summer schools, winter institutes, innumerable lectures at Uppsala, Gainesville and elsewhere, and Sanibel Symposia; by founding the International Journal of Quantum Chemistry and Advances in Quantum Chemistry; and through his vision of the possible and his optimism for the future, which has inspired generations of physicists, chemists, mathematicians, and biologists to devote their lives to molecular electronic theory and dynamics, solid state, and quantum biology. Fundamental World of Quantum Chemistry: Volumes I, II and III form a collection of papers dedicated to the memory of Per-Olov Löwdin. These volumes are of interest to a broad audience of quantum, theoretical, physical, biological, and computational chemists; atomic, molecular, and condensed matter physicists; biophysicists; mathematicians working in many-body theory; and historians and philosophers of natural science. The volumes will be accessible to all levels, from students, PhD students, and postdocs to their supervisors.




Neither Physics nor Chemistry


Book Description

The evolution of a discipline at the intersection of physics, chemistry, and mathematics. Quantum chemistry—a discipline that is not quite physics, not quite chemistry, and not quite applied mathematics—emerged as a field of study in the 1920s. It was referred to by such terms as mathematical chemistry, subatomic theoretical chemistry, molecular quantum mechanics, and chemical physics until the community agreed on the designation of quantum chemistry. In Neither Physics Nor Chemistry, Kostas Gavroglu and Ana Simões examine the evolution of quantum chemistry into an autonomous discipline, tracing its development from the publication of early papers in the 1920s to the dramatic changes brought about by the use of computers in the 1970s. The authors focus on the culture that emerged from the creative synthesis of the various traditions of chemistry, physics, and mathematics. They examine the concepts, practices, languages, and institutions of this new culture as well as the people who established it, from such pioneers as Walter Heitler and Fritz London, Linus Pauling, and Robert Sanderson Mulliken, to later figures including Charles Alfred Coulson, Raymond Daudel, and Per-Olov Löwdin. Throughout, the authors emphasize six themes: epistemic aspects and the dilemmas caused by multiple approaches; social issues, including academic politics, the impact of textbooks, and the forging of alliances; the contingencies that arose at every stage of the developments in quantum chemistry; the changes in the field when computers were available to perform the extraordinarily cumbersome calculations required; issues in the philosophy of science; and different styles of reasoning.




Computational Chemistry And Chemical Engineering - Proceedings Of The Third Unam-cray Supercomputing Confrence


Book Description

This book provides a wide-ranging and up-to-date description of state-of-the-art computational methodologies in chemistry and chemical engineering. It displays a representative mix of topics on the computation and modeling of chemical systems of all sizes, from the very small (atomic) to the very large (industrial). The book constitutes an excellent overview for graduate students as well as a critical update for researchers.




New Frontiers in Nanochemistry: Concepts, Theories, and Trends


Book Description

The final volume of this new innovative and informative three-volume set explains and explores the essential basic and advanced concepts from various areas within the nanosciences. This volume primarily focuses on increasing awareness of sustainable nanochemistry, meaning the social and economic impact of nanochemistry, in order to mitigate ecological resource depletion and to promote the exploration of nature as a resource for future benefits. This volume adopts a pharmacological lens, examining the multitude of ways in which nano-research can contribute to the development of pharmaceutical drugs and paying particular attention to toxicology and renewable energy within nanochemistry. Under the vast expertise of the editor, the volume contains 34 entries contributed by renowned international scientists and scholars. The content in this volume covers topics such as anti-HIV agents, ecotoxicology, solar cells and photovoltaic phenomena, spectral-SAR, and more—alphabetically organized and accompanied by equations, figures, and brief letters in order to emphasize the potential applications of the concepts discussed.




New Frontiers in Nanochemistry: Concepts, Theories, and Trends


Book Description

New Frontiers in Nanochemistry: Concepts, Theories, and Trends, Volume 1: Structural Nanochemistry is the first volume of the new three-volume set that explains and explores the important concepts from various areas within the nanosciences. This first volume focuses on structural nanochemistry and encompasses the general fundamental aspects of nanochemistry while simultaneously incorporating crucial material from other fields, in particular mathematic and natural sciences, with specific attention to multidisciplinary chemistry. Under the broad expertise of the editor, the volume contains 50 concise yet comprehensive entries from world-renowned scholars, alphabetically organizing a multitude of essential basic and advanced concepts, ranging from algebraic chemistry to new energy technology, from the bondonic theory of chemistry to spintronics, and from fractal dimension and kinetics to quantum dots and tight binding—and much more. The entries contain definitions, short characterizations, uses and usefulness, limitations, references, and more.