Physics and Chemistry of the Upper Atmosphere


Book Description

A multitude of processes that operate in the upper atmosphere are revealed by detailed physical and mathematical descriptions of the interactions of particles and radiation, temperatures, spectroscopy and dynamics.




Airglow as an Indicator of Upper Atmospheric Structure and Dynamics


Book Description

The book summarizes international progress over the last few decades in upper atmosphere airglow research. Measurement methods, theoretical concepts and empirical models of a wide spectrum of upper atmospheric emissions and their variability are considered. The book contains a detailed bibliography of studies related to the upper atmosphere airglow. Readers will also benefit from a lot of useful information on emission characteristics and its formation processes found the book.




Modeling of Atmospheric Chemistry


Book Description

Mathematical modeling of atmospheric composition is a formidable scientific and computational challenge. This comprehensive presentation of the modeling methods used in atmospheric chemistry focuses on both theory and practice, from the fundamental principles behind models, through to their applications in interpreting observations. An encyclopaedic coverage of methods used in atmospheric modeling, including their advantages and disadvantages, makes this a one-stop resource with a large scope. Particular emphasis is given to the mathematical formulation of chemical, radiative, and aerosol processes; advection and turbulent transport; emission and deposition processes; as well as major chapters on model evaluation and inverse modeling. The modeling of atmospheric chemistry is an intrinsically interdisciplinary endeavour, bringing together meteorology, radiative transfer, physical chemistry and biogeochemistry, making the book of value to a broad readership. Introductory chapters and a review of the relevant mathematics make this book instantly accessible to graduate students and researchers in the atmospheric sciences.




The Atmosphere and Climate of Mars


Book Description

This volume reviews all aspects of Mars atmospheric science from the surface to space, and from now and into the past.




Physics and Chemistry of the Upper Atmosphere


Book Description

A multitude of processes that operate in the upper atmosphere are revealed by detailed physical and mathematical descriptions of the interactions of particles and radiation, temperatures, spectroscopy and dynamics.




Dynamics of the Tropical Atmosphere and Oceans


Book Description

This book presents a unique and comprehensive view of the fundamental dynamical and thermodynamic principles underlying the large circulations of the coupled ocean-atmosphere system Dynamics of The Tropical Atmosphere and Oceans provides a detailed description of macroscale tropical circulation systems such as the monsoon, the Hadley and Walker Circulations, El Niño, and the tropical ocean warm pool. These macroscale circulations interact with a myriad of higher frequency systems, ranging from convective cloud systems to migrating equatorial waves that attend the low-frequency background flow. Towards understanding and predicting these circulation systems. A comprehensive overview of the dynamics and thermodynamics of large-scale tropical atmosphere and oceans is presented using both a “reductionist” and “holistic” perspectives of the coupled tropical system. The reductionist perspective provides a detailed description of the individual elements of the ocean and atmospheric circulations. The physical nature of each component of the tropical circulation such as the Hadley and Walker circulations, the monsoon, the incursion of extratropical phenomena into the tropics, precipitation distributions, equatorial waves and disturbances described in detail. The holistic perspective provides a physical description of how the collection of the individual components produces the observed tropical weather and climate. How the collective tropical processes determine the tropical circulation and their role in global weather and climate is provided in a series of overlapping theoretical and modelling constructs. The structure of the book follows a graduated framework. Following a detailed description of tropical phenomenology, the reader is introduced to dynamical and thermodynamical constraints that guide the planetary climate and establish a critical role for the tropics. Equatorial wave theory is developed for simple and complex background flows, including the critical role played by moist processes. The manner in which the tropics and the extratropics interact is then described, followed by a discussion of the physics behind the subtropical and near-equatorial precipitation including arid regions. The El Niño phenomena and the monsoon circulations are discussed, including their covariance and predictability. Finally, the changing structure of the tropics is discussed in terms of the extent of the tropical ocean warm pool and its relationship to the intensity of global convection and climate change. Dynamics of the Tropical Atmosphere and Oceans is aimed at advanced undergraduate and early career graduate students. It also serves as an excellent general reference book for scientists interested in tropical circulations and their relationship with the broader climate system.




The Atmospheric Sciences


Book Description

Technology has propelled the atmospheric sciences from a fledgling discipline to a global enterprise. Findings in this field shape a broad spectrum of decisions--what to wear outdoors, whether aircraft should fly, how to deal with the issue of climate change, and more. This book presents a comprehensive assessment of the atmospheric sciences and offers a vision for the future and a range of recommendations for federal authorities, the scientific community, and education administrators. How does atmospheric science contribute to national well-being? In the context of this question, the panel identifies imperatives in scientific observation, recommends directions for modeling and forecasting research, and examines management issues, including the growing problem of weather data availability. Five subdisciplines--physics, chemistry, dynamics and weather forecasting, upper atmosphere and near-earth space physics, climate and climate change--and their status as the science enters the twenty-first century are examined in detail, including recommendations for research. This readable book will be of interest to public-sector policy framers and private-sector decisionmakers as well as researchers, educators, and students in the atmospheric sciences.




The Earth's Atmosphere


Book Description

The author has sought to incorporate in the book some of the fundamental concepts and principles of the physics and dynamics of the atmosphere, a knowledge and understanding of which should help an average student of science to comprehend some of the great complexities of the earth-atmosphere system, in which a thr- way interaction between the atmosphere, the land and the ocean tends to maintain an overall mass and energy balance in the system through physical and dynamical processes. The book, divided into two parts and consisting of 19 chapters, introduces only those aspects of the subject that, according to the author, are deemed essential to meet the objective in view. The emphasis is more on clarity and understanding of physical and dynamical principles than on details of complex theories and ma- ematics. Attempt is made to treat each subject from ?rst principles and trace its development to present state, as far as possible. However, a knowledge of basic c- culus and differential equations is sine qua non especially for some of the chapters which appear later in the book.




Atmospheric Dynamics


Book Description

Mankin Mak's textbook provides a self-contained course on atmospheric dynamics. The first half is suitable for senior undergraduates, and develops the physical, dynamical and mathematical concepts at the fundamental level. The second half of the book is aimed at more advanced students who are already familiar with the basics. The contents have been developed from many years of the author's teaching at the University of Illinois. Discussions are supplemented with schematics, weather maps and statistical plots of the atmospheric general circulation. Students often find the connection between theoretical dynamics and atmospheric observation somewhat tenuous, and this book demonstrates a strong connection between the key dynamics and real observations. This textbook is an invaluable asset for courses in atmospheric dynamics for advanced students and researchers in atmospheric science, ocean science, weather forecasting, environmental science, and applied mathematics. Some background in mathematics, physics and basic atmospheric science is assumed.




Saturn from Cassini-Huygens


Book Description

This book is one of two volumes meant to capture, to the extent practical, the scienti?c legacy of the Cassini-Huygens prime mission, a landmark in the history of planetary exploration. As the most ambitious and interdisciplinary planetary exploration mission ?own to date, it has extended our knowledge of the Saturn system to levels of detail at least an order of magnitude beyond that gained from all previous missions to Saturn. Nestled in the brilliant light of the new and deep understanding of the Saturn planetary system is the shiny nugget that is the spectacularly successful collaboration of individuals, - ganizations and governments in the achievement of Cassini-Huygens. In some ways the pa- nershipsformedandlessonslearnedmaybethemost enduringlegacyofCassini-Huygens.The broad, international coalition that is Cassini-Huygens is now conducting the Cassini Equinox Mission and planning the Cassini Solstice Mission, and in a major expansion of those fruitful efforts, has extended the collaboration to the study of new ?agship missions to both Jupiter and Saturn. Such ventures have and will continue to enrich us all, and evoke a very optimistic vision of the future of international collaboration in planetary exploration. The two volumes in the series Saturn from Cassini-Huygens and Titan from Cassini- Huygens are the direct products of the efforts of over 200 authors and co-authors. Though each book has a different set of three editors, the group of six editors for the two volumes has worked together through every step of the process to ensure that these two volumes are a set.