Structure and Equivalence


Book Description

This Element explores what it means for two theories in physics to be equivalent (or inequivalent), and what lessons can be drawn about their structure as a result. It does so through a twofold approach. On the one hand, it provides a synoptic overview of the logical tools that have been employed in recent philosophy of physics to explore these topics: definition, translation, Ramsey sentences, and category theory. On the other, it provides a detailed case study of how these ideas may be applied to understand the dynamical and spatiotemporal structure of Newtonian mechanics - in particular, in light of the symmetries of Newtonian theory. In so doing, it brings together a great deal of exciting recent work in the literature, and is sure to be a valuable companion for all those interested in these topics.




Cross-Cultural Research Methods in Psychology


Book Description

Cross-cultural research is now an undeniable part of mainstream psychology and has had a major impact on conceptual models of human behavior. Although it is true that the basic principles of social psychological methodology and data analysis are applicable to cross-cultural research, there are a number of issues that are distinct to it, including managing incongruities of language and quantifying cultural response sets in the use of scales. Cross-Cultural Research Methods in Psychology provides state-of-the-art knowledge about the methodological problems that need to be addressed if a researcher is to conduct valid and reliable cross-cultural research. It also offers practical advice and examples of solutions to those problems and is a must-read for any student of culture.




Equivalence, Invariants and Symmetry


Book Description

Drawing on a wide range of mathematical disciplines, including geometry, analysis, applied mathematics and algebra, this book presents an innovative synthesis of methods used to study problems of equivalence and symmetry which arise in a variety of mathematical fields and physical applications. Systematic and constructive methods for solving equivalence problems and calculating symmetries are developed and applied to a wide variety of mathematical systems, including differential equations, variational problems, manifolds, Riemannian metrics, polynomials and differential operators. Particular emphasis is given to the construction and classification of invariants, and to the reductions of complicated objects to simple canonical forms. This book will be a valuable resource for students and researchers in geometry, analysis, algebra, mathematical physics and other related fields.




The Logical Structure of Mathematical Physics


Book Description

This book is about scientific theories of a particular kind - theories of mathematical physics. Examples of such theories are classical and relativis tic particle mechanics, classical electrodynamics, classical thermodynamics, statistical mechanics, hydrodynamics, and quantum mechanics. Roughly, these are theories in which a certain mathematical structure is employed to make statements about some fragment of the world. Most of the book is simply an elaboration of this rough characterization of theories of mathematical physics. It is argued that each theory of mathematical physics has associated with it a certain characteristic mathematical struc ture. This structure may be used in a variety of ways to make empirical claims about putative applications of the theory. Typically - though not necessarily - the way this structure is used in making such claims requires that certain elements in the structure play essentially different roles. Some playa "theoretical" role; others playa "non-theoretical" role. For example, in classical particle mechanics, mass and force playa theoretical role while position plays a non-theoretical role. Some attention is given to showing how this distinction can be drawn and describing precisely the way in which the theoretical and non-theoretical elements function in the claims of the theory. An attempt is made to say, rather precisely, what a theory of mathematical physics is and how you tell one such theory from anothe- what the identity conditions for these theories are.




Adapting Tests in Linguistic and Cultural Situations


Book Description

This book provides a practical but scientifically grounded step-by-step approach to the adaptation of tests in linguistic and cultural contexts.




Toward a Structural Theory of Action


Book Description

Toward a Structural Theory of Action: Network Models of Social Structure, Perception, and Action centers on the concept of social structure, perceptions, and actions, as well as the strategies through which these concepts guide empirical research. This book also proposes a model of status/role-sets as patterns of relationships defining positions in the social topology. This text consists of nine chapters separated into three parts. Chapter 1 introduces the goals and organization of the book. Chapters 2-4 provide analytical synopsis of available network models of social differentiation, and then use these models in describing actual stratification. Chapter 5 presents a model in which actor interests are captured. Subsequent chapter assesses the empirical adequacy of the two predictions described in this book. Then, other chapters provide a network model of constraint and its empirical adequacy. This book will be valuable to anthropologists, economists, political scientists, and psychologists.




Handbook of Process Algebra


Book Description

Process Algebra is a formal description technique for complex computer systems, especially those involving communicating, concurrently executing components. It is a subject that concurrently touches many topic areas of computer science and discrete math, including system design notations, logic, concurrency theory, specification and verification, operational semantics, algorithms, complexity theory, and, of course, algebra.This Handbook documents the fate of process algebra since its inception in the late 1970's to the present. It is intended to serve as a reference source for researchers, students, and system designers and engineers interested in either the theory of process algebra or in learning what process algebra brings to the table as a formal system description and verification technique. The Handbook is divided into six parts spanning a total of 19 self-contained Chapters. The organization is as follows. Part 1, consisting of four chapters, covers a broad swath of the basic theory of process algebra. Part 2 contains two chapters devoted to the sub-specialization of process algebra known as finite-state processes, while the three chapters of Part 3 look at infinite-state processes, value-passing processes and mobile processes in particular. Part 4, also three chapters in length, explores several extensions to process algebra including real-time, probability and priority. The four chapters of Part 5 examine non-interleaving process algebras, while Part 6's three chapters address process-algebra tools and applications.




The Logic in Philosophy of Science


Book Description

Reconsiders the role of formal logic in the analytic approach to philosophy, using cutting-edge mathematical techniques to elucidate twentieth-century debates.




Philosophy of Mathematics


Book Description

Shapiro argues that both realist and anti-realist accounts of mathematics are problematic. To resolve this dilemma, he articulates a "structuralist" approach, arguing that the subject matter of a mathematical theory is not a fixed domain of numbers that exist independent of each other, but rather is the natural structure, the pattern common to any system of objects that has an initial object and successor relation satisfying the induction principle.




Model Categories and Their Localizations


Book Description

The aim of this book is to explain modern homotopy theory in a manner accessible to graduate students yet structured so that experts can skip over numerous linear developments to quickly reach the topics of their interest. Homotopy theory arises from choosing a class of maps, called weak equivalences, and then passing to the homotopy category by localizing with respect to the weak equivalences, i.e., by creating a new category in which the weak equivalences are isomorphisms. Quillen defined a model category to be a category together with a class of weak equivalences and additional structure useful for describing the homotopy category in terms of the original category. This allows you to make constructions analogous to those used to study the homotopy theory of topological spaces. A model category has a class of maps called weak equivalences plus two other classes of maps, called cofibrations and fibrations. Quillen's axioms ensure that the homotopy category exists and that the cofibrations and fibrations have extension and lifting properties similar to those of cofibration and fibration maps of topological spaces. During the past several decades the language of model categories has become standard in many areas of algebraic topology, and it is increasingly being used in other fields where homotopy theoretic ideas are becoming important, including modern algebraic $K$-theory and algebraic geometry. All these subjects and more are discussed in the book, beginning with the basic definitions and giving complete arguments in order to make the motivations and proofs accessible to the novice. The book is intended for graduate students and research mathematicians working in homotopy theory and related areas.