High Angular Resolution Studies of the Structure and Evolution of Protoplanetary Disks


Book Description

Young stars are surrounded by massive, rotating disks of dust and gas, which supply a reservoir of material that may be incorporated into planets or accreted onto the central star. In this dissertation, I use high angular resolution observations at a range of wavelengths to understand the structure, ubiquity, and evolutionary timescales of protoplanetary disks. First, I describe a study of Class I protostars, objects believed to be at an evolutionary stage between collapsing spherical clouds and fully-assembled young stars surrounded by protoplanetary disks. I use a Monte Carlo radiative transfer code to model new 0.9 micron scattered light images, 1.3 mm continuum images, and broadband spectral energy distributions. This modeling shows that Class I sources are probably surrounded by massive protoplanetary disks embedded in massive infalling envelopes. For the best-fitting models of the circumstellar dust distributions, I determine several important properties, including envelope and disk masses, mass infall rates, and system inclinations, and I use these results to constrain the evolutionary stage of these objects. Second, I discuss observations of the innermost regions of more evolved disks around T Tauri and Herbig Ae/Be stars, obtained with the Palomar Testbed and Keck Interferometers. I constrain the spatial and temperature structure of the circumstellar material at sub-AU radii, and demonstrate that lower-mass stars are surrounded by inclined disks with puffed-up inner edges 0.1-1 AU from the star. In contrast, the truncated inner disks around more massive stars may not puff-up, indicating that disk structure depends on stellar properties. I discuss the implications of these results for disk accretion, terrestrial planet formation and giant planet migration. Finally, I put these detailed studies of disk structure into a broader context by constraining the mass distribution and evolutionary timescales of circumstellar disks. Using the Owens Valley Millimeter Array, I mapped the millimeter continuum emission toward >300 low-mass stars in the NGC 2024 and Orion Nebula clusters. These observations demonstrate that the average disk mass in each cluster is comparable to the "minimum-mass protosolar nebula," and that there may be disk evolution on one million year timescales.










From Protoplanetary Disks to Planet Formation


Book Description

Is the Sun and its planetary system special? How did the Solar system form? Are there similar systems in the Galaxy? How common are habitable planets? What processes take place in the early life of stars and in their surrounding circumstellar disks that could impact whether life emerges or not? This book is based on the lectures by Philip Armitage and Wilhelm Kley presented at 45th Saas-Fee Advanced Course „From Protoplanetary Disks to Planet Formation“ of the Swiss Society for Astrophysics and Astronomy. The first part deals with the physical processes occurring in proto-planetary disks starting with the observational context, structure and evolution of the proto-planetary disk, turbulence and accretion, particle evolution and structure formation. The second part covers planet formation and disk-planet interactions. This includes in detail dust and planetesimal formation, growth to protoplanets, terrestrial planet formation, giant planet formation, migration of planets, multi-planet systems and circumbinary planets. As Saas-Fee advanced course this book offers PhD students an in-depth treatment of the topic enabling them to enter on a research project in the field.




Protostars and Planets VI


Book Description

Proceedings of a conference held in Heidelberg, Germany, July 15-20, 2013.




Astrophysics of Planet Formation


Book Description

Concise and self-contained, this textbook gives a graduate-level introduction to the physical processes that shape planetary systems, covering all stages of planet formation. Writing for readers with undergraduate backgrounds in physics, astronomy, and planetary science, Armitage begins with a description of the structure and evolution of protoplanetary disks, moves on to the formation of planetesimals, rocky, and giant planets, and concludes by describing the gravitational and gas dynamical evolution of planetary systems. He provides a self-contained account of the modern theory of planet formation and, for more advanced readers, carefully selected references to the research literature, noting areas where research is ongoing. The second edition has been thoroughly revised to include observational results from NASA's Kepler mission, ALMA observations and the JUNO mission to Jupiter, new theoretical ideas including pebble accretion, and an up-to-date understanding in areas such as disk evolution and planet migration.




Formation, Evolution, and Dynamics of Young Solar Systems


Book Description

This book's interdisciplinary scope aims at bridging various communities: 1) cosmochemists, who study meteoritic samples from our own solar system, 2) (sub-) millimetre astronomers, who measure the distribution of dust and gas of star-forming regions and planet-forming discs, 3) disc modellers, who describe the complex photo-chemical structure of parametric discs to fit these to observation, 4) computational astrophysicists, who attempt to decipher the dynamical structure of magnetised gaseous discs, and the effects the resulting internal structure has on the aerodynamic re-distribution of embedded solids, 5) theoreticians in planet formation theory, who aim to piece it all together eventually arriving at a coherent holistic picture of the architectures of planetary systems discovered by 6) the exoplanet observers, who provide us with unprecedented samples of exoplanet worlds. Combining these diverse fields the book sheds light onto the riddles that research on planet formation is currently confronted with, and paves the way for a comprehensive understanding of the formation, evolution, and dynamics of young solar systems. The chapters ‘Chondrules – Ubiquitous Chondritic Solids Tracking the Evolution of the Solar Protoplanetary Disk’, ‘Dust Coagulation with Porosity Evolution’ and ‘The Emerging Paradigm of Pebble Accretion’ are published open access under a CC BY 4.0 license via link.springer.com.




Protoplanetary Dust


Book Description

The first comprehensive overview of planet formation for students and researchers in astronomy, cosmochemistry, laboratory astrophysics and planetary sciences.




Protostars and Planets V


Book Description

'Protostars and Planets V' builds on the latest results from recent advances in ground and space-based astronomy and in numerical computing techniques to offer the most detailed and up-to-date picture of star and planet formation - including the formation and early evolution of our own solar system.




Evolution of Protoplanetary Disks in the Orion A Star-forming Region


Book Description

"In this dissertation we investigate the characteristics of Class II protoplanetary disks in Orion A star-forming region. Our major goal is to analyze a large sample of protoplanetary disks with near- and mid-IR spectra, by statistical approaches, to understand protoplanetary disk evolution in Orion A. The topics with which we deal include the following: (1) Environmental and age effects on the evolution of protoplanetary disks; (2) Giant planet formation in the transitional disks of Orion A: a statistical study of correlations among disk and stellar properties; (3) The impact of extreme UV radiation on the protoplanetary disks near the Trapezium. For this work, 303 protoplanetary disks in Orion A region observed by IRS/Spitzer and the follow-up observation of 120 objects from SpeX/IRTF are used to reveal the characteristics of Class II disks in Orion A. For clues on environmental effects on disk evolution and planet formation, we compare the disk properties and dust properties of Orion A disks to that of Taurus disks and examine trends with respect to position within Orion A. We extract spectral indices, equivalent widths, and integrated fluxes from IRS spectra of Class II objects in Orion A which pertain to disk structure and dust composition. We measure mass accretion rates using hydrogen recombination lines in SpeX spectra of our targets. Utilizing the properties, we analyze the general distribution of properties of disks in ONC, L1641, and Taurus from their histograms. Our main findings are as follows: Transitional disks - those protoplanetary disks for which deficits of infrared excess signify sharp-edged gaps in the dust distribution - are produced gravitationally by companions to the central star. The vast majority of the companions (