Structure, Energetics and Reactions of Metal Cation Complexes of Dipeptides in the Gas Phase


Book Description

Structure, energetics and reactions of ions in the gas phase can be revealed by mass spectrometry techniques coupled to ions activation methods. Ions can gain enough energy for dissociation by absorbing IR light photons introduced by an IR laser to the mass spectrometer. Also collisions with a neutral molecule can increase the internal energy of ions and provide the dissociation threshold energy. Infrared multiple photon dissociation (IRMPD) or sustained off-resonance irradiation collision-induced dissociation (SORI-CID) methods are combined with Fourier Transform Ion Cyclotron Resonance (FT-ICR) mass spectrometers where ions can be held at low pressures for a long time. The outcome of ion activation techniques especially when it is compared to the computational methods results is of great importance since it provides useful information about the structure, thermochemistry and reactivity of ions of interest. In this work structure, energetics and reactivity of metal cation complexes with dipeptides are investigated. Effect of metal cation size and charge as well as microsolvation on the structure of these complexes has been studied. Structures of bare and hydrated Na and Ca complexes with isomeric dipeptides AlaGly and GlyAla are characterized by means of IRMPD spectroscopy and computational methods. At the second step unimolecular dissociation reactions of singly charged and doubly charged multimetallic complexes of alkaline earth metal cations with GlyGly are examined by CID method. Also structural features of these complexes are revealed by comparing their IRMPD spectra with calculated IR spectra of possible structures. At last the unimolecular dissociation reactions of Mn complexes are studied. IRMPD spectroscopy along with computational methods is also employed for structural elucidation of Mn complexes. In addition the ion-molecule reactions of Mn complexes with CO and water are explored in the low pressures obtained in the ICR cell.




Ion/Molecule Attachment Reactions: Mass Spectrometry


Book Description

This book explores the mechanism of alkali-metal ion/molecule association reaction, surveys the instrumental basis to study its kinetic, and describes the instrumentation to the measurement of alkali-metal ion affinities. The applications of the ion complexation mechanism in the condensed phase in reaction to direct analysis MS are also covered. Other topics include mechanism and reaction rate, experimental and theoretical ion affinities, applications of ion attachment reactions (IAR) to mass spectrometry such as alkali ion CIMS, ion attachment MS and cationization mass spectrometry of ESI, FAB, FD, LD, MALDI and SIMS and topics of IAR-based direct analysis mass spectrometry.




Principles of Mass Spectrometry Applied to Biomolecules


Book Description

An extensive compilation of articles by leading professionals, this reference explains the fundamental principles of mass spectrometry as they relate to the life sciences. Topics covered include spectroscopy, energetics and mechanisms of peptide fragmentation, electron capture dissociation, ion-ion and ion-molecule reactions, reaction dynamics, collisional activation, soft-landing, protein structure and interactions, thermochemistry, and more. The book empowers readers to develop new ways of using these techniques.




Chemical Abstracts


Book Description







The Encyclopedia of Mass Spectrometry


Book Description

This multi-volume work provides comprehensive coverage of the full range of topics and techniques in mass spectrometry. Techniques, methods and applications are described in detail; including limitations, current problems, and areas in which the method does not succeed well.




Electrospray and MALDI Mass Spectrometry


Book Description

Discover how advances in mass spectrometry are fueling new discoveries across a broad range of research areas Electrospray and MALDI Mass Spectrometry brings both veteran practitioners and beginning scientists up to date with the most recent trends and findings in electrospray ionization and matrix-assisted laser desorption/ionization (MALDI) mass spectrometry. In particular, this Second Edition highlights how advances in electrospray and MALDI mass spectrometry are supporting important discoveries in new and emerging fields such as proteomics and metabolomics as well as in traditional areas of chemistry and physics research. Electrospray AND MALDI Mass Spectrometry, SECOND EDITION is divided into five parts: Part A, Fundamentals of ES, explains the fundamental phenomena underlying the electrospray process, including selectivity in ionization and inherent electrochemistry, and concludes with a chapter offering a comparative inventory of source hardware Part B, Fundamentals of MALDI, confronts ionization mechanisms, instrument development, and matrix selection, and includes a final chapter that explores the special application of MALDI to obtain two-dimensional images of spatial distributions of compounds on surfaces Part C, ES and MALDI Coupling to Mass Spectrometry Instrumentation, examines the coupling of these ionization techniques to various mass analyzers, including quadrupole ion trap, time-of-flight, Fourier transform ion cyclotron resonance, and ion mobility mass spectrometers Part D, Practical Aspects of ES and MALDI, investigates analytical issues including quantification, charge-state distributions, noncovalent interactions in solution that are preserved as gas-phase ions, and various means of ion excitation in preparation for tandem mass spectrometry, and offers a guide to the interpretation of even-electron mass spectra Part E, Biological Applications of ES and MALDI, examines the role of mass spectrometry in such areas as peptide and protein characterization, carbohydrate analysis, lipid analysis, and drug discovery Written by a team of leading experts, the book not only provides a critical review of the literature, but also presents key concepts in tutorial fashion to help readers take full advantage of the latest technological breakthroughs and applications. As a result, Electrospray and MALDI Mass Spectrometry will help researchers fully leverage the power of electrospray and MALDI mass spectrometry. The judicious compartmentalization of chapters, and the pedagogic presentation style throughout, render the book highly suitable for use as a text for graduate-level courses in advanced mass spectrometry.