Structure of Crystalline Solids, Imperfections and Defects in Crystals


Book Description

This book contains a unified approach to crystallography and the structural imperfections and defects found within crystals. The reason the authors chose for treating these two subjects together was that the study of the first is necessary for a proper appreciation of the second. Understanding the idea of lattice and of the crystal classes firstly will help its relevance to the study of imperfections, defects, and phase transformations in the second part of the book. Split into two parts: the "Structure of the Crystalline Solids" and the "Imperfections and Defects in Crystals", and each broken into subchapters, this volume combines the classical and exact description of the symmetry of a perfect crystal with the possible geometries of the major defects-dislocations, stacking faults, point, line, surface and volume defects, twins, and the effects of martensitic transformation in iron. The first part presents a systematic treatment of the basics of crystallography, discussing space lattice, unit cells, symmetry, point groups, crystal systems in terms of Miller indices for crystallographic points, directions, and planes, and zone axis, as well. A number of important concepts such as packing factor, atomic radius, linear, planar, and volume density, polymorphism, allotropes, interstitial sites in cubic and hexagonal structures, and structural features of the most representative compounds used nowadays in a myriad of applications are introduced and carefully explained. In the second part, the authors guide the reader in a step-by-step way through point, line, planar, and volume defects, with an emphasis on their structural properties.A large amount of the latest critically evaluated data for the properties of all elements on the periodic table of the elements, including hundreds of up-to-date crystal structure data are presented. Each chapter contains the logical presentation of concepts supported by suitably chosen examples and worked problems. Hundreds of illustrations within the text help the reader visualize crystal structures and mathematical objects, supporting important topics, but also illustrating crystalline structures found in thousands of compounds. A concise summary and plenty of review questions and problems at the end reinforce the important key points.




Imperfections in Crystalline Solids


Book Description

An accessible textbook providing students with a working knowledge of the properties of defects in crystals, in a step-by-step tutorial style.




An Introduction to Composite Materials


Book Description

This edition has been greatly enlarged and updated to provide both scientists and engineers with a clear and comprehensive understanding of composite materials. In describing both theoretical and practical aspects of their production, properties and usage, the book crosses the borders of many disciplines. Topics covered include: fibres, matrices, laminates and interfaces; elastic deformation, stress and strain, strength, fatigue crack propagation and creep resistance; toughness and thermal properties; fatigue and deterioration under environmental conditions; fabrication and applications. Coverage has been increased to include polymeric, metallic and ceramic matrices and reinforcement in the form of long fibres, short fibres and particles. Designed primarily as a teaching text for final-year undergraduates in materials science and engineering, this book will also interest undergraduates and postgraduates in chemistry, physics, and mechanical engineering. In addition, it will be an excellent source book for academic and technological researchers on materials.




Elements of Structures and Defects of Crystalline Materials


Book Description

Elements of Structures and Defects of Crystalline Materials has been written to cover not only the fundamental principles behind structures and defects, but also to provide deep insights into understanding the relationships of properties, defect chemistry and processing of the concerned materials. Part One deals with structures, while Part Two covers defects. Since the knowledge of the electron configuration of elements is necessary for understanding the nature of chemical bonding, it is discussed in the opening chapter. Chapter Two then describes the bonding formation within the crystal structures of varied materials, with Chapter Three delving into how a material’s structure is formed. In view of the importance of the effects of the structure distortion on the material properties due to the fields, the related topics have been included in section 3.4. Moreover, several materials still under intensive investigation have been illustrated to provide deep insights into understanding the effects of the relationships of processing, structures and defects on the material properties. The defects of materials are explored in Part II. Chapter 4 deals with the point defects of metal and ceramics. Chapter 5 covers the fundamentals of the characteristics of dislocations, wherein physics and the atomic mechanics of several issues have been described in detail. In view of the significant influence of the morphologies including size, shape and distribution of grains, phases on the microstructure evolution, and, in turn, the properties of materials, the final chapter focuses on the fundamentals of interface energies, including single phase (grain) boundary and interphase boundary. Discusses the relationship between properties, defect chemistry and the processing of materials Presents coverage of the fundamental principles behind structures and defects Includes information on two-dimensional and three-dimensional imperfections in solids




Crystallography and Crystal Defects


Book Description

Extensively revised and updated, this new edition of a classic text presents a unified approach to crystallography and to the defects found within crystals. The book combines the classical and exact description of symmetry of a perfect crystal with the possible geometries of the major defects-dislocations, stacking faults, point defects, twins, interfaces and the effects of martensitic transformations. A number of important concepts and exciting new topics have been introduced in this second edition, including piezoelectricity, liquid crystals, nanocrystalline concepts, incommensurate materials and the structure of foamed and amorphous solids. The coverage of quasicrystalline materials has been extended, and the data tables, appendices and references have been fully updated. Reinforcing its unrivalled position as the core text for teaching crystallography and crystal defects, each chapter includes problem sets with brief numerical solutions at the end of the book. Detailed worked solutions, supplementary lecture material and computer programs for crystallographic calculations are provided online (http://booksupport.wiley.com).




Structure and Chemistry of Crystalline Solids


Book Description

Understandable by anyone concerned with crystals or solid state properties dependent on structure Presents a general system using simple notation to reveal similarities and differences among crystal structures More than 300 selected and prepared figures illustrate structures found in thousands of compounds




Imperfections in Crystals


Book Description




Point Defects in Solids


Book Description

Crystal defects can no longer be thought of as a scientific curiosity, but must be considered an important aspect of solid-state science. This is largely because many of the more interesting properties of crystalline solids are disproportionately dominated by effects due to a tiny concentration of imperfections in an otherwise perfect lattice. The physics of such lattice defects is not only of significance in a great variety of applications, but is also interesting in its own right. Thus, an extensive science of point defects and dislocations has been constructed during the past two and a half decades. Stimulated by the technological and scientific interest in plasticity, there have appeared in recent years rather a large number of books dealing with dislocations; in the case of point defects, however, only very few broad and extensive treatments have been published. Thus, there are few compre hensive, tutorial sources for the scientist or engineer whose research ac tivities are affected by point defect phenomena, or who might wish to enter the field. It is partially to fill this need that the present treatise aims.




Defects in Crystalline Solids


Book Description




Concepts in Physical Metallurgy


Book Description

The progress of civilization can be, in part, attributed to their ability to employ metallurgy. This book is an introduction to multiple facets of physical metallurgy, materials science, and engineering. As all metals are crystalline in structure, it focuses attention on these structures and how the formation of these crystals are responsible for certain aspects of the material's chemical and physical behaviour. Concepts in Physical Metallurgy also discusses the mechanical properties of metals, the theory of alloys, and physical metallurgy of ferrous and non-ferrous alloys.