Structure, Thermophysical Properties of Liquids, and Their Connection with Glass Formability


Book Description

Metallic glasses have drawn significant attention due to their unique properties, such as high strength, excellent elastic energy storage capacity, and versatile processability. However, why some liquids can easily form metallic glasses while others don't is still unclear. Since metallic glasses are formed when liquids are cooled fast enough to bypass crystallization, we hope to better understand glass formation by investigating the structural evolution and thermophysical properties of the liquids as they are cooled toward the glass transition. Multiple molecular dynamics simulations suggest a crossover temperature for the dynamics near the liquidus temperature, which corresponds to the onset of cooperative structural rearrangements and may be the beginning of the glass transition. In this dissertation, a possible structural signature of this onset of cooperativity is first identified using high-energy synchrotron X-ray scattering studies and viscosity measurements on electrostatically levitated liquids. We also address the practical question of how to predict glass formation from properties of the high temperature liquids. A method to accurately predict the glass transition temperature in metallic glasses from properties of the equilibrium liquids is proposed. It uses the viscosity and the thermal expansion coefficient for the equilibrium liquid. Using the predicted glass transition temperature and a fragility parameter developed from the liquid properties, a new prediction formula is generated, which only uses the liquid properties. While the prediction formula works for most cases, in some cases, it fails. The analysis of these anomalous cases demonstrates that the structural similarity between the liquid and crystal phases plays an important role in the glass formability. This is the first demonstration of this important controlling factor for glass formability. We also used machine learning (Lasso regression and Random Forest) to predict the glass formability and identify important predictors. The identified important predictors are in good agreement with those from the empirical rules. Finally, the evolution of the Cu46Zr54 liquid structure is investigated by elastic neutron scattering (with isotopic substitution) and synchrotron X-ray scattering studies. The experimental results show that the number of Cu-Cu and Zr-Zr atom pairs increases as the temperature decreases, while the number of Cu-Zr atom pairs decreases on cooling. This result disagrees with predictions from previous molecular dynamics studies, suggesting that the potentials used in the molecular dynamics simulations should be reassessed.




Fundamentals of Inorganic Glasses


Book Description

Fundamentals of Inorganic Glasses, Third Edition, is a comprehensive reference on the field of glass science and engineering that covers numerous, significant advances. This new edition includes the most recent advances in glass physics and chemistry, also discussing groundbreaking applications of glassy materials. It is suitable for upper level glass science courses and professional glass scientists and engineers at industrial and government labs. Fundamental concepts, chapter-ending problem sets, an emphasis on key ideas, and timely notes on suggested readings are all included. The book provides the breadth required of a comprehensive reference, offering coverage of the composition, structure and properties of inorganic glasses. - Clearly develops fundamental concepts and the basics of glass science and glass chemistry - Provides a comprehensive discussion of the composition, structure and properties of inorganic glasses - Features a discussion of the emerging applications of glass, including applications in energy, environment, pharmaceuticals, and more - Concludes chapters with problem sets and suggested readings to facilitate self-study




Bulk Metallic Glasses


Book Description

Reflecting the fast pace of research in the field, the Second Edition of Bulk Metallic Glasses has been thoroughly updated and remains essential reading on the subject. It incorporates major advances in glass forming ability, corrosion behavior, and mechanical properties. Several of the newly proposed criteria to predict the glass-forming ability of alloys have been discussed. All other areas covered in this book have been updated, with special emphasis on topics where significant advances have occurred. These include processing of hierarchical surface structures and synthesis of nanophase composites using the chemical behavior of bulk metallic glasses and the development of novel bulk metallic glasses with high-strength and high-ductility and superelastic behavior. New topics such as high-entropy bulk metallic glasses, nanoporous alloys, novel nanocrystalline alloys, and soft magnetic glassy alloys with high saturation magnetization have also been discussed. Novel applications, such as metallic glassy screw bolts, surface coatings, hyperthermia glasses, ultra-thin mirrors and pressure sensors, mobile phone casing, and degradable biomedical materials, are described. Authored by the world’s foremost experts on bulk metallic glasses, this new edition endures as an indispensable reference and continues to be a one-stop resource on all aspects of bulk metallic glasses.




Encyclopedia of Glass Science, Technology, History, and Culture Two Volume Set


Book Description

This Encyclopedia begins with an introduction summarizing itsscope and content. Glassmaking; Structure of Glass, GlassPhysics,Transport Properties, Chemistry of Glass, Glass and Light,Inorganic Glass Families, Organic Glasses, Glass and theEnvironment, Historical and Economical Aspect of Glassmaking,History of Glass, Glass and Art, and outlinepossible newdevelopments and uses as presented by the best known people in thefield (C.A. Angell, for example). Sections and chapters arearranged in a logical order to ensure overall consistency and avoiduseless repetitions. All sections are introduced by a briefintroduction and attractive illustration. Newly investigatedtopics will be addresses, with the goal of ensuring that thisEncyclopedia remains a reference work for years to come.







Properties of Glass-Forming Melts


Book Description

This book presents state-of-the-art information concerning properties and processes involved in glass melts. Based upon contributions by renowned authors and scientists working with glass melt systems, Properties of Glass-Forming Melts is an excellent compilation of the current knowledge on property data, mechanisms, measurement techniques, and str




Structural Glasses and Supercooled Liquids


Book Description

With contributions from 24 global experts in diverse fields, and edited by world-recognized leaders in physical chemistry, chemical physics and biophysics, Structural Glasses and Supercooled Liquids: Theory, Experiment, and Applications presents a modern, complete survey of glassy phenomena in many systems based on firmly established characteristics of the underlying molecular motions as deduced by first principle theoretical calculations, or with direct/single-molecule experimental techniques. A well-rounded view of a variety of disordered systems where cooperative phenomena, which are epitomized by supercooled liquids, take place is provided. These systems include structural glasses and supercooled liquids, polymers, complex liquids, protein conformational dynamics, and strongly interacting electron systems with quenched/self-generated disorder. Detailed calculations and reasoned arguments closely corresponding with experimental data are included, making the book accessible to an educated non-expert reader.




Introduction to Glass Science and Technology


Book Description

This book provides a concise and inexpensive introduction for an undergraduate course in glass science and technology. The level of the book has deliberately been maintained at the introductory level to avoid confusion of the student by inclusion of more advanced material, and is unique in that its text is limited to the amount suitable for a one term course for students in materials science, ceramics or inorganic chemistry. The contents cover the fundamental topics of importance in glass science and technology, including glass formation, crystallization, phase separation and structure of glasses. Additional chapters discuss the most important properties of glasses, including discussion of physical, optical, electrical, chemical and mechanical properties. A final chapter provides an introduction to a number of methods used to form technical glasses, including glass sheet, bottles, insulation fibre, optical fibres and other common commercial products. In addition, the book contains discussion of the effects of phase separation and crystallization on the properties of glasses, which is neglected in other texts. Although intended primarily as a textbook, Introduction to Glass Science and Technology will also be invaluable to the engineer or scientist who desires more knowledge regarding the formation, properties and production of glass.




Modern Glass Characterization


Book Description

The book consists of a series of edited chapters, each written by an expert in the field and focusing on a particular characterization technique as applied to glass. The book covers a variety of techniques ranging from the very common (like Raman and FTIR) to the most recent (and less well known) ones, like SEM for structural analysis and photoelastic measurements. The level of the chapters make it suitable for researchers and for graduate students about to start their research work. It will also: discuss the technique itself, background, nuances when it comes to looking at glassy materials, interpretation of results, case studies, and recent and near-future innovations Fill a widening gap in modern techniques for glass characterization Provide much needed updates on the multiple essential characterization techniques




Thermodynamic and Kinetic Aspects of the Vitreous State


Book Description

This is the first book to logically present the major problems of the vitreous state within the framework of irreversible thermodynamics. Filled with elementary explanations for difficult problems, this easily understood text/reference treats in detail the criteria of glass transition, the peculiarities of relaxing structural parameters, and the Prigogine-Defay ratio. Based on the author's rigorous generalization of the Second Law for non-equilibrium, the book systematizes all known thermodynamic data for glasses and melts. The thermodynamic essence of structural relaxation and memory effects are considered. The viscous flow theories are treated as a constituent of the kinetic description. All theoretical questions are illustrated by comparison of calculations with the experiments for glasses of inorganic and organic nature, with special attention to structural classification. An informative review of modern structural investigations is included. The bibliography follows the history of the main problems from the nineteenth century.