Matrix and Finite Element Analyses of Structures


Book Description

This textbook has been primarily written for undergraduate and postgraduate engineering students studying the mechanics of solids and structural systems. The content focuses on matrix, finite elements, structural analysis, and computer implementation in a unified and integrated manner. Using classical methods of structural analysis, it discusses matrix and the finite element methods in an easy-to-understand manner. It consists of a large number of diagrams and illustrations for easy understanding of the concepts. All the computer codes are presented in "FORTRAN" AND "C". This textbook is highly useful for the undergraduate and postgraduate engineering students. It also acquaints the practicing engineers about the computer-based techniques used in structural analysis.







Engineering Computation of Structures: The Finite Element Method


Book Description

This book presents theories and the main useful techniques of the Finite Element Method (FEM), with an introduction to FEM and many case studies of its use in engineering practice. It supports engineers and students to solve primarily linear problems in mechanical engineering, with a main focus on static and dynamic structural problems. Readers of this text are encouraged to discover the proper relationship between theory and practice, within the finite element method: Practice without theory is blind, but theory without practice is sterile. Beginning with elasticity basic concepts and the classical theories of stressed materials, the work goes on to apply the relationship between forces, displacements, stresses and strains on the process of modeling, simulating and designing engineered technical systems. Chapters discuss the finite element equations for static, eigenvalue analysis, as well as transient analyses. Students and practitioners using commercial FEM software will find this book very helpful. It uses straightforward examples to demonstrate a complete and detailed finite element procedure, emphasizing the differences between exact and numerical procedures.




An Introduction to Matrix Structural Analysis and Finite Element Methods


Book Description

This comprehensive volume is unique in presenting the typically decoupled fields of Matrix Structural Analysis (MSA) and Finite Element Methods (FEM) in a cohesive framework. MSA is used not only to derive formulations for truss, beam, and frame elements, but also to develop the overarching framework of matrix analysis. FEM builds on this foundation with numerical approximation techniques for solving boundary value problems in steady-state heat and linear elasticity. Focused on coding, the text guides the reader from first principles to explicit algorithms. This intensive, code-centric approach actively prepares the student or practitioner to critically assess the performance of commercial analysis packages and explore advanced literature on the subject.




Structures: Matrix and Finite Element


Book Description

Presents matrix, finite element, computer and structural analysis in a unified and integrated manner. The matrix and finite element techniques are designed for the analysis of large-sized structures.




Integrated Matrix Analysis of Structures


Book Description

7. 2 Element Stiffness Matrix of a Space Truss Local Coordinates 221 7. 3 Transformation of the Element Stiffness Matrix 223 7. 4 Element Axial Force 224 7. 5 Assemblage ofthe System Stiffness Matrix 225 7. 6 Problems 236 8 STATIC CONDENSATION AND SUBSTRUCTURING 8. 1 Introduction 239 8. 2 Static Condensation 239 8. 3 Substructuring 244 8. 4 Problems 259 9 INTRODUCTION TO FINITE ELEMENT MEmOD 9. 1 Introduction 261 9. 2 Plane Elasticity Problems 262 9. 3 Plate Bending 285 9. 4 Rectangular Finite Element for Plate Bending 285 9. 5 Problems 298 APPENDIX I Equivalent Nodal Forces 301 APPENDIXll Displacement Functions for Fixed-End Beams 305 GLOSSARY 309 SELECTED BmLIOGRAPHY 317 INDEX 319 ix Preface This is the first volume of a series of integrated textbooks for the analysis and design of structures. The series is projected to include a first volume in Matrix Structural Analysis to be followed by volumes in Structural Dynamics and Earthquake Engineering as well as other volumes dealing with specialized or advanced topics in the analysis and design of structures. An important objective in the preparation of these volumes is to integrate and unify the presentation using common notation, symbols and general format. Furthermore, all of these volumes will be using the same structural computer program, SAP2000, developed and maintained by Computers and Structures, Inc. , Berkeley, California.




Finite Element Analysis for Composite Structures


Book Description

This book is an adventure into the computer analysis of three dimensional composite structures using the finite element method (FEM). It is designed for Universities, for advanced undergraduates, for graduates, for researchers, and for practising engineers in industry. The text advances gradually from the analysis of simple beams to arbitrary anisotropic and composite plates and shells; it treats both linear and nonlinear behavior. Once the basic philosophy of the method is understood, the reader may expand its application and modify the computer programs to suit particular needs. The book arose from four years research at the University of Stuttgart, Germany. We present the theory and computer programs concisely and systematically so that they can be used both for teaching and applications. We have tried to make the book simple and clear, and to show the underlying physical and mathematical ideas. The FEM has been in existence for more than 50 years. One of the authors, John Argyris, invented this technique in World War II in the course of the check on the analysis of the swept back wing of the twin engined Meteor Jet Fighter. In this work, he also consistently applied matrix calculus and introduced triangular membrane elements in conjunction with two new definitions of triangular stresses and strains which are now known as the component and total measures. In fact, he was responsible for the original formulation of the matrix force and displacement methods, the forerunners of the FEM.




Finite Element Methods for Structures with Large Stochastic Variations


Book Description

The finite element method (FEM) can be successfully applied to various field problems in solid mechanics, fluid mechanics and electrical engineering. This text discusses finite element methods for structures with large stochastic variations.




Finite Element Techniques in Structural Mechanics


Book Description

This advanced undergraduate and postgraduate text serves for courses in many engineering disciplines and professionals in industrial or academic research. It is written in a step-by-step methodological approach so that readers can acquire knowledge, either through formal engineering courses or by self-study. Also useful for industrial engineers as a reference manual. Comprehensively reviews finite element techniques in structural mechanics, paying particular attention to matrix algebra, the matrix displacement method and vibration of structures, among other topics Written in a step-by-step methodological approach so that readers can acquire knowledge, either through formal engineering courses or by self-study Also useful as a reference manual




Finite Element Methods-(For Structural Engineers)


Book Description

About the Book: The book presents the basic ideas of the finite element method so that it can be used as a textbook in the curriculum for undergraduate and graduate engineering courses. In the presentation of fundamentals and derivations care had been taken not to use an advanced mathematical approach, rather the use of matrix algebra and calculus is made. Further no effort is being made to include the intricacies of the computer programming aspect, rather the material is presented in a manner so that the readers can understand the basic principles using hand calculations. However, a list of computer codes is given. Several illustrative examples are presented in a detailed stepwise manner to explain the various steps in the application of the method. A fairly comprehensive references list at the end of each chapter is given for additional information and further study. About the Author: Wail N. Al-Rifaie is Professor of Civil Engineering at the University of Technology, Baghdad, Iraq. He obtained his Ph.D. from the University College, Cardiff, U.K. in 1975. Dr. Wail established the Civil Engineering Department at the Engineering College in Baghdad and was the Head for nearly seven years. He received the Telford Premium Prize from the Institution of Civil Engineering (London) in 1976. His main areas of research are: Box girder bridge, folded plate structures, frames and shear walls including dynamic analysis. He is the author of three books on structural analysis in Arabic. Ashok K. Govil is Professor in the Department of Applied Mechanics, Motilal Nehru Regional Engineering College, Allahabad, India and was also Head of the same department for over five years. He obtained B.E. degree in Civil Engineering (1963) from BITS, Pilani, India, and M.S. (1969) and Ph.D., (1977) from the University of Iowa, Iowa City, U.S.A. Dr. Govil`s main areas of research are: Optimal design of structures, fail-safe design of structures, and finite element method. He has written several research papers and technical reports, and developed many computer programmes for optimal design of structures including dynamic analysis and vulnerability reduction.