Algebra and Trigonometry


Book Description

"The text is suitable for a typical introductory algebra course, and was developed to be used flexibly. While the breadth of topics may go beyond what an instructor would cover, the modular approach and the richness of content ensures that the book meets the needs of a variety of programs."--Page 1.




Precalculus


Book Description

Precalculus is adaptable and designed to fit the needs of a variety of precalculus courses. It is a comprehensive text that covers more ground than a typical one- or two-semester college-level precalculus course. The content is organized by clearly-defined learning objectives, and includes worked examples that demonstrate problem-solving approaches in an accessible way. Coverage and Scope Precalculus contains twelve chapters, roughly divided into three groups. Chapters 1-4 discuss various types of functions, providing a foundation for the remainder of the course. Chapter 1: Functions Chapter 2: Linear Functions Chapter 3: Polynomial and Rational Functions Chapter 4: Exponential and Logarithmic Functions Chapters 5-8 focus on Trigonometry. In Precalculus, we approach trigonometry by first introducing angles and the unit circle, as opposed to the right triangle approach more commonly used in College Algebra and Trigonometry courses. Chapter 5: Trigonometric Functions Chapter 6: Periodic Functions Chapter 7: Trigonometric Identities and Equations Chapter 8: Further Applications of Trigonometry Chapters 9-12 present some advanced Precalculus topics that build on topics introduced in chapters 1-8. Most Precalculus syllabi include some of the topics in these chapters, but few include all. Instructors can select material as needed from this group of chapters, since they are not cumulative. Chapter 9: Systems of Equations and Inequalities Chapter 10: Analytic Geometry Chapter 11: Sequences, Probability and Counting Theory Chapter 12: Introduction to Calculus




College Algebra


Book Description

College Algebra provides a comprehensive exploration of algebraic principles and meets scope and sequence requirements for a typical introductory algebra course. The modular approach and richness of content ensure that the book meets the needs of a variety of courses. College Algebra offers a wealth of examples with detailed, conceptual explanations, building a strong foundation in the material before asking students to apply what they've learned. Coverage and Scope In determining the concepts, skills, and topics to cover, we engaged dozens of highly experienced instructors with a range of student audiences. The resulting scope and sequence proceeds logically while allowing for a significant amount of flexibility in instruction. Chapters 1 and 2 provide both a review and foundation for study of Functions that begins in Chapter 3. The authors recognize that while some institutions may find this material a prerequisite, other institutions have told us that they have a cohort that need the prerequisite skills built into the course. Chapter 1: Prerequisites Chapter 2: Equations and Inequalities Chapters 3-6: The Algebraic Functions Chapter 3: Functions Chapter 4: Linear Functions Chapter 5: Polynomial and Rational Functions Chapter 6: Exponential and Logarithm Functions Chapters 7-9: Further Study in College Algebra Chapter 7: Systems of Equations and Inequalities Chapter 8: Analytic Geometry Chapter 9: Sequences, Probability and Counting Theory







College Trigonometry


Book Description




The Theory of Nilpotent Groups


Book Description

This monograph presents both classical and recent results in the theory of nilpotent groups and provides a self-contained, comprehensive reference on the topic. While the theorems and proofs included can be found throughout the existing literature, this is the first book to collect them in a single volume. Details omitted from the original sources, along with additional computations and explanations, have been added to foster a stronger understanding of the theory of nilpotent groups and the techniques commonly used to study them. Topics discussed include collection processes, normal forms and embeddings, isolators, extraction of roots, P-localization, dimension subgroups and Lie algebras, decision problems, and nilpotent groups of automorphisms. Requiring only a strong undergraduate or beginning graduate background in algebra, graduate students and researchers in mathematics will find The Theory of Nilpotent Groups to be a valuable resource.




Precalculus


Book Description

Precalculus is adaptable and designed to fit the needs of a variety of precalculus courses. It is a comprehensive text that covers more ground than a typical one- or two-semester college-level precalculus course. The content is organized by clearly-defined learning objectives and includes worked examples that demonstrate problem-solving approaches in an accessible way.




Pre-Calculus, Calculus, and Beyond


Book Description

This is the last of three volumes that, together, give an exposition of the mathematics of grades 9–12 that is simultaneously mathematically correct and grade-level appropriate. The volumes are consistent with CCSSM (Common Core State Standards for Mathematics) and aim at presenting the mathematics of K–12 as a totally transparent subject. This volume distinguishes itself from others of the same genre in getting the mathematics right. In trigonometry, this volume makes explicit the fact that the trigonometric functions cannot even be defined without the theory of similar triangles. It also provides details for extending the domain of definition of sine and cosine to all real numbers. It explains as well why radians should be used for angle measurements and gives a proof of the conversion formulas between degrees and radians. In calculus, this volume pares the technicalities concerning limits down to the essential minimum to make the proofs of basic facts about differentiation and integration both correct and accessible to school teachers and educators; the exposition may also benefit beginning math majors who are learning to write proofs. An added bonus is a correct proof that one can get a repeating decimal equal to a given fraction by the “long division” of the numerator by the denominator. This proof attends to all three things all at once: what an infinite decimal is, why it is equal to the fraction, and how long division enters the picture. This book should be useful for current and future teachers of K–12 mathematics, as well as for some high school students and for education professionals.




Calculus for the AP® Course


Book Description

From one of today’s most accomplished and trusted mathematics authors comes a new textbook that offers unmatched support for students facing the AP® calculus exam, and the teachers helping them prepare for it. Sullivan and Miranda’s Calculus for the AP® Course covers every Big Idea, Essential Knowledge statement, Learning Objective, and Math Practice described in the 2016-2017 redesigned College BoardTM Curriculum Framework. Its concise, focused narrative and integrated conceptual and problem-solving tools give students just the help they need as they learn calculus and prepare for the redesigned AP® Exam. And its accompanying Teacher’s Edition provides an in depth correlation and abundant tips, examples, projects, and resources to ensure close adherence the new Curriculum Framework.




Forthcoming Books


Book Description