Catalytic Carbonylation Reactions


Book Description

Carbonylation reactions are of major importance in both organic and industrial chemistry. Due to the availability, price and reactivity pattern, carbon monoxide is becoming a more and more important building block for fine and bulk chemicals. The major reaction types of carbon monoxide are comprehensively discussed by leading experts from academia and industry. The authors highlight important carbonylation reactions such as hydroformylation, alkoxy-carbonylations, co/olefin-copolymerization, Pauson-Khand reactions and others. They illustrate applications in organic synthesis and give industrial examples. This volume is designed to provide graduate students and researchers with essential information on the use of carbon monoxide in organic synthesis. Therefore, the reader will get a balanced view of this developing and complex subject.




Carbon Monoxide in Organic Synthesis


Book Description

This book reviews some important reactions of carbon monoxide in organic chemistry: hydroformylation, metal carbonyl- and acid catalyzed carbonylation and ring closure reactions with carbon monoxide. It is not merely a translation of the German edition which appeared in 1967 but the text has been completely revised. This was necessary because this chemistry is rapidly developing in research as well as in technical application, which is underlined by the increase of production of e. g. oxo chemicals from about 1.4 million tons in 1967 to 2.7 million tons in 1969, nearly a doubling within 2 years. Quite a number of new research results were published during the last two years, and these additional references have been cited in the English edition. Most of the new papers cited deal with hydroformylation reactions: however, a number of the papers reviewed also report important new aspects in carboxylation and ring closure reactions. The author is indebted to a number of colleagues who helped to collect these new data and have given him valuable hints and would like to thank Miss 1. Forster, Dr. B. Cornils, Dr. D. Hahn, Dr. P. Schneller, Dr. H. Tummes, and Dr. J. Weber for their cooperation, and to Prof. Dr. F. Piacenti (University of Pisa, Italy) for discussions on reaction mecha nisms. The author is especially grateful to Dr. Charles R. Adams of the Shell Development Company, Emeryville, California, for his cooperation in translating the German text.




Zinc Catalysis


Book Description

Filling the gap in the market for comprehensive coverage of this hot topic, this timely book covers a wide range of organic transformations, e. g. reductions of unsaturated compounds, oxidation reactions, Friedel-Crafts reactions, hydroamination reactions, depolymerizations, transformations of carbon dioxide, oxidative coupling reactions, as well as C-C, C-N, and C-O bond formation reactions. A chapter on the application of zinc catalysts in total synthesis is also included. With its aim of stimulating further research and discussion in the field, this is a valuable reference for professionals in academia and industry wishing to learn about the latest developments.




Organometallic Chemistry in Industry


Book Description

Showcases the important role of organometallic chemistry in industrial applications and includes practical examples and case studies This comprehensive book takes a practical approach to how organometallic chemistry is being used in industrial applications. It uniquely offers numerous, real-world examples and case studies that aid working R&D researchers as well as Ph.D. and postdoc students preparing to ace interviews in order to enter the workforce. Edited by two world-leading and established industrial chemists, the book covers flow chemistry (catalytic and non-catalytic organometallic chemistry), various cross-coupling reactions (C-C, C-N, and C-B) in classical batch chemistry, conjugate addition reactions, metathesis, and C-H arylation and achiral hydrogenation reactions. Beginning with an overview of the many industrial milestones within the field over the years, Organometallic Chemistry in Industry: A Practical Approach provides chapters covering: the design, development, and execution of a continuous flow enabled API manufacturing route; continuous manufacturing as an enabling technology for low temperature organometallic chemistry; the development of a nickel-catalyzed enantioselective Mizoroki-Heck coupling; and the development of iron-catalyzed Kumada cross-coupling for the large scale production of Aliskiren intermediates. The book also examines aspects of homogeneous hydrogenation from industrial research; the latest industrial uses of olefin metathesis; and more. -Includes rare industrial case studies difficult to find in current literature -Helps readers successfully carry out their own reactions -Covers topics like flow chemistry, cross-coupling reactions, and dehydrative decarbonylation -Features a foreword by Nobel Laureate R. H. Grubbs -A perfect resource for every R&D researcher in industry -Useful for PhD students and postdocs: excellent preparation for a job interview Organometallic Chemistry in Industry: A Practical Approach is an excellent resource for all chemists, including those working in the pharmaceutical industry and organometallics.




Contemporary Catalysis


Book Description

Providing an integrated approach to the various aspects of catalysis, this textbook is ideal for graduate students from catalysis, engineering, and organic synthesis.




Organometallic Chemistry and Catalysis


Book Description

From the beginning of chemistry as an exact (natural) science - almost 200 years ago - there was a more or less distinct differentiation between its various branches such as organic, inorganic, physical, analytical, or biochemistry. With the increasing insight into the connections and governing laws it soon became obvious, however, that such a clear separation could be regarded as more or less obsolete; within almost any field of chemical research one has to deal with most of the branches mentioned. Especially organic and inorganic chemistry are significant examples for this statement, overlapping considerably within the important field of organome tallic chemistry. This regime of chemistry started its advance with the discovery of dimethylzinc 150 years ago, had a highlight with the introduction of Grignard reagents around 1900, developed further with the start of lithium organyls in 1925 and literally exploded after the discovery of the first transition metal cyclopenta dienyl complex ferrocene half a century ago. The chronological sequence of the important steps, i. e. 1850 (Zn) - 1900 (Mg) - 1925 (Li) - 1950 (Fe), seems rather remarkable. The increasing group of metallocenes is not only of high theoretical and, due to the potential chirality of its members, stereochemical interest, but offers also a wide variety of extremely useful catalysts, especially for stereoselective reactions. The Austrian Chemical Society took this development into account by organizing the Twelfth International Conference on Organometallic Chemistry held in Vienna in 1985.




Modern Carbonylation Methods


Book Description

Comprehensively covering modern carbonylation chemistry, this book is an indispensable companion for all synthetic chemists working in industry and academia. This monograph contains everything there is to know from recent advances in the investigation of carbonylation catalysts, via coordination chemistry to the synthetic application of transition metal catalyzed carbonylations.




Comprehensive Inorganic Chemistry II


Book Description

Comprehensive Inorganic Chemistry II, Nine Volume Set reviews and examines topics of relevance to today’s inorganic chemists. Covering more interdisciplinary and high impact areas, Comprehensive Inorganic Chemistry II includes biological inorganic chemistry, solid state chemistry, materials chemistry, and nanoscience. The work is designed to follow on, with a different viewpoint and format, from our 1973 work, Comprehensive Inorganic Chemistry, edited by Bailar, Emeléus, Nyholm, and Trotman-Dickenson, which has received over 2,000 citations. The new work will also complement other recent Elsevier works in this area, Comprehensive Coordination Chemistry and Comprehensive Organometallic Chemistry, to form a trio of works covering the whole of modern inorganic chemistry. Chapters are designed to provide a valuable, long-standing scientific resource for both advanced students new to an area and researchers who need further background or answers to a particular problem on the elements, their compounds, or applications. Chapters are written by teams of leading experts, under the guidance of the Volume Editors and the Editors-in-Chief. The articles are written at a level that allows undergraduate students to understand the material, while providing active researchers with a ready reference resource for information in the field. The chapters will not provide basic data on the elements, which is available from many sources (and the original work), but instead concentrate on applications of the elements and their compounds. Provides a comprehensive review which serves to put many advances in perspective and allows the reader to make connections to related fields, such as: biological inorganic chemistry, materials chemistry, solid state chemistry and nanoscience Inorganic chemistry is rapidly developing, which brings about the need for a reference resource such as this that summarise recent developments and simultaneously provide background information Forms the new definitive source for researchers interested in elements and their applications; completely replacing the highly cited first edition, which published in 1973




Liquid Phase Aerobic Oxidation Catalysis


Book Description

The first book to place recent academic developments within the context of real life industrial applications, this is a timely overview of the field of aerobic oxidation reactions in the liquid phase that also illuminates the key challenges that lie ahead. As such, it covers both homogeneous as well as heterogeneous chemocatalysis and biocatalysis, along with examples taken from various industries: bulk chemicals and monomers, specialty chemicals, flavors and fragrances, vitamins, and pharmaceuticals. One chapter is devoted to reactor concepts and engineering aspects of these methods, while another deals with the relevance of aerobic oxidation catalysis for the conversion of renewable feedstock. With chapters written by a team of academic and industrial researchers, this is a valuable reference for synthetic and catalytic chemists at universities as well as those working in the pharmaceutical and fine chemical industries seeking a better understanding of these reactions and how to design large scale processes based on this technology.




Catalysis: An Integrated Approach


Book Description

This book concentrates on industrially relevant reactions which are catalyzed by heterogeneous and homogeneous catalysts. Homogeneous catalysis by metal complexes is treated jointly with heterogeneous catalysis using metallic and non-metallic solids. In both areas the high degree of sophistication of spectroscopic techniques and theoretical modelling has led to an enormous increase in our understanding at the molecular level. This holds for the kinetics of the reactions and the reactivities of the catalysts, as well as for the syntheses of the catalytic materials. The development of catalysis science since the first edition of this book has necessitated a thorough revision, including special chapters on biocatalysis, catalyst characterization and adsorption methods. The multidisciplinary nature of catalysis is reflected in the choice of a novel combination of basic disciplines which will be refreshing and inspiring to readers.