Studies in Complexity and Cryptography


Book Description

This book presents a collection of 36 pieces of scientific work in the areas of complexity theory and foundations of cryptography: 20 research contributions, 13 survey articles, and 3 programmatic and reflective viewpoint statements. These so far formally unpublished pieces were written by Oded Goldreich, some in collaboration with other scientists. The articles included in this book essentially reflect the topical scope of the scientific career of Oded Goldreich now spanning three decades. In particular the topics dealt with include average-case complexity, complexity of approximation, derandomization, expander graphs, hashing functions, locally testable codes, machines that take advice, NP-completeness, one-way functions, probabilistically checkable proofs, proofs of knowledge, property testing, pseudorandomness, randomness extractors, sampling, trapdoor permutations, zero-knowledge, and non-iterative zero-knowledge. All in all, this potpourri of studies in complexity and cryptography constitutes a most valuable contribution to the field of theoretical computer science centered around the personal achievements and views of one of its outstanding representatives.




Complexity Theory and Cryptology


Book Description

Modern cryptology increasingly employs mathematically rigorous concepts and methods from complexity theory. Conversely, current research topics in complexity theory are often motivated by questions and problems from cryptology. This book takes account of this situation, and therefore its subject is what may be dubbed "cryptocomplexity'', a kind of symbiosis of these two areas. This book is written for undergraduate and graduate students of computer science, mathematics, and engineering, and can be used for courses on complexity theory and cryptology, preferably by stressing their interrelation. Moreover, it may serve as a valuable source for researchers, teachers, and practitioners working in these fields. Starting from scratch, it works its way to the frontiers of current research in these fields and provides a detailed overview of their history and their current research topics and challenges.




Studies in Complexity and Cryptography


Book Description

Paying witness to the author’s thirty-year career in science, these high-quality papers, some co-written with colleagues, reflect his professional range, covering material from average-case complexity to derandomization and probabilistically checkable proofs.




Complexity Theory and Cryptology


Book Description

Modern cryptology increasingly employs mathematically rigorous concepts and methods from complexity theory. Conversely, current research topics in complexity theory are often motivated by questions and problems from cryptology. This book takes account of this situation, and therefore its subject is what may be dubbed "cryptocomplexity'', a kind of symbiosis of these two areas. This book is written for undergraduate and graduate students of computer science, mathematics, and engineering, and can be used for courses on complexity theory and cryptology, preferably by stressing their interrelation. Moreover, it may serve as a valuable source for researchers, teachers, and practitioners working in these fields. Starting from scratch, it works its way to the frontiers of current research in these fields and provides a detailed overview of their history and their current research topics and challenges.




Computational Complexity


Book Description

New and classical results in computational complexity, including interactive proofs, PCP, derandomization, and quantum computation. Ideal for graduate students.




Tutorials on the Foundations of Cryptography


Book Description

This is a graduate textbook of advanced tutorials on the theory of cryptography and computational complexity. In particular, the chapters explain aspects of garbled circuits, public-key cryptography, pseudorandom functions, one-way functions, homomorphic encryption, the simulation proof technique, and the complexity of differential privacy. Most chapters progress methodically through motivations, foundations, definitions, major results, issues surrounding feasibility, surveys of recent developments, and suggestions for further study. This book honors Professor Oded Goldreich, a pioneering scientist, educator, and mentor. Oded was instrumental in laying down the foundations of cryptography, and he inspired the contributing authors, Benny Applebaum, Boaz Barak, Andrej Bogdanov, Iftach Haitner, Shai Halevi, Yehuda Lindell, Alon Rosen, and Salil Vadhan, themselves leading researchers on the theory of cryptography and computational complexity. The book is appropriate for graduate tutorials and seminars, and for self-study by experienced researchers, assuming prior knowledge of the theory of cryptography.




Complexity and Cryptography


Book Description

Cryptography plays a crucial role in many aspects of today's world, from internet banking and ecommerce to email and web-based business processes. Understanding the principles on which it is based is an important topic that requires a knowledge of both computational complexity and a range of topics in pure mathematics. This book provides that knowledge, combining an informal style with strong proofs of the key results to provide an accessible introduction. It includes many examples and exercises, and is based on a highly successful course developed and taught over many years.




Foundations of Cryptography: Volume 2, Basic Applications


Book Description

A rigorous treatment of Encryption, Signatures, and General Cryptographic Protocols, emphasizing fundamental concepts.




CryptoSchool


Book Description

This book offers an introduction to cryptology, the science that makes secure communications possible, and addresses its two complementary aspects: cryptography—--the art of making secure building blocks—--and cryptanalysis—--the art of breaking them. The text describes some of the most important systems in detail, including AES, RSA, group-based and lattice-based cryptography, signatures, hash functions, random generation, and more, providing detailed underpinnings for most of them. With regard to cryptanalysis, it presents a number of basic tools such as the differential and linear methods and lattice attacks. This text, based on lecture notes from the author’s many courses on the art of cryptography, consists of two interlinked parts. The first, modern part explains some of the basic systems used today and some attacks on them. However, a text on cryptology would not be complete without describing its rich and fascinating history. As such, the colorfully illustrated historical part interspersed throughout the text highlights selected inventions and episodes, providing a glimpse into the past of cryptology. The first sections of this book can be used as a textbook for an introductory course to computer science or mathematics students. Other sections are suitable for advanced undergraduate or graduate courses. Many exercises are included. The emphasis is on providing reasonably complete explanation of the background for some selected systems.




Computational Cryptography


Book Description

The area of computational cryptography is dedicated to the development of effective methods in algorithmic number theory that improve implementation of cryptosystems or further their cryptanalysis. This book is a tribute to Arjen K. Lenstra, one of the key contributors to the field, on the occasion of his 65th birthday, covering his best-known scientific achievements in the field. Students and security engineers will appreciate this no-nonsense introduction to the hard mathematical problems used in cryptography and on which cybersecurity is built, as well as the overview of recent advances on how to solve these problems from both theoretical and practical applied perspectives. Beginning with polynomials, the book moves on to the celebrated Lenstra-Lenstra-Lovász lattice reduction algorithm, and then progresses to integer factorization and the impact of these methods to the selection of strong cryptographic keys for usage in widely used standards.