International Comparative Studies in Mathematics


Book Description

It argues that the main purpose of educational research is to improve student learning, and that international comparative studies are no exception.




Developing Research in Mathematics Education


Book Description

Developing Research in Mathematics Education is the first book in the series New Perspectives on Research in Mathematics Education, to be produced in association with the prestigious European Society for Research in Mathematics Education. This inaugural volume sets out broad advances in research in mathematics education which have accumulated over the last 20 years through the sustained exchange of ideas and collaboration between researchers in the field. An impressive range of contributors provide specifically European and complementary global perspectives on major areas of research in the field on topics that include: the content domains of arithmetic, geometry, algebra, statistics, and probability; the mathematical processes of proving and modeling; teaching and learning at specific age levels from early years to university; teacher education, teaching and classroom practices; special aspects of teaching and learning mathematics such as creativity, affect, diversity, technology and history; theoretical perspectives and comparative approaches in mathematics education research. This book is a fascinating compendium of state-of-the-art knowledge for all mathematics education researchers, graduate students, teacher educators and curriculum developers worldwide.




Connecting Mathematics and Mathematics Education


Book Description

This open access book features a selection of articles written by Erich Ch. Wittmann between 1984 to 2019, which shows how the “design science conception” has been continuously developed over a number of decades. The articles not only describe this conception in general terms, but also demonstrate various substantial learning environments that serve as typical examples. In terms of teacher education, the book provides clear information on how to combine (well-understood) mathematics and methods courses to benefit of teachers. The role of mathematics in mathematics education is often explicitly and implicitly reduced to the delivery of subject matter that then has to be selected and made palpable for students using methods imported from psychology, sociology, educational research and related disciplines. While these fields have made significant contributions to mathematics education in recent decades, it cannot be ignored that mathematics itself, if well understood, provides essential knowledge for teaching mathematics beyond the pure delivery of subject matter. For this purpose, mathematics has to be conceived of as an organism that is deeply rooted in elementary operations of the human mind, which can be seamlessly developed to higher and higher levels so that the full richness of problems of various degrees of difficulty, and different means of representation, problem-solving strategies, and forms of proof can be used in ways that are appropriate for the respective level. This view of mathematics is essential for designing learning environments and curricula, for conducting empirical studies on truly mathematical processes and also for implementing the findings of mathematics education in teacher education, where it is crucial to take systemic constraints into account.




Lectures on Poisson Geometry


Book Description

This excellent book will be very useful for students and researchers wishing to learn the basics of Poisson geometry, as well as for those who know something about the subject but wish to update and deepen their knowledge. The authors' philosophy that Poisson geometry is an amalgam of foliation theory, symplectic geometry, and Lie theory enables them to organize the book in a very coherent way. —Alan Weinstein, University of California at Berkeley This well-written book is an excellent starting point for students and researchers who want to learn about the basics of Poisson geometry. The topics covered are fundamental to the theory and avoid any drift into specialized questions; they are illustrated through a large collection of instructive and interesting exercises. The book is ideal as a graduate textbook on the subject, but also for self-study. —Eckhard Meinrenken, University of Toronto




Language and Mathematics Education


Book Description

A volume in Research in Mathematics Education Series Editor Barbara J. Dougherty, Iowa State University Marketing description: Issues of language in mathematics learning and teaching are important for both practical and theoretical reasons. Addressing issues of language is crucial for improving mathematics learning and teaching for students who are bilingual, multilingual, or learning English. These issues are also relevant to theory: studies that make language visible provide a complex perspective of the role of language in reasoning and learning mathematics. What is the relevant knowledge base to consider when designing research studies that address issues of language in the learning and teaching of mathematics? What scholarly literature is relevant and can contribute to research? In order to address issues of language in mathematics education, researchers need to use theoretical perspectives that integrate current views of mathematics learning and teaching with current views on language, discourse, bilingualism, and second language acquisition. This volume contributes to the development of such integrated approaches to research on language issues in mathematics education by describing theoretical perspectives for framing the study of language issues and methodological issues to consider when designing research studies. The volume provides interdisciplinary reviews of the research literature from four very different perspectives: mathematics education (Moschkovich), Cultural-Historical-Activity Theory (Gutierrez, Sengupta-Irving, & Dieckmann), systemic functional linguistics (Schleppegrell), and assessment (Solano-Flores). This volume offers graduate students and researchers new to the study of language in mathematics education an introduction to resources for conceptualizing, framing, and designing research studies. For those already involved in examining language issues, the volume provides useful and critical reviews of the literature as well as recommendations for moving forward in designing research. Lastly, the volume provides a basis for dialogue across multiple research communities engaged in collaborative work to address these pressing issues.




Mathematics Education for a New Era


Book Description

Stanford mathematician and NPR Math Guy Keith Devlin explains why, fun aside, video games are the ideal medium to teach middle-school math. Aimed primarily at teachers and education researchers, but also of interest to game developers who want to produce videogames for mathematics education, Mathematics Education for a New Era: Video Games as a Med




Teaching Mathematics in Colleges and Universities: Case Studies for Today's Classroom


Book Description

Progress in mathematics frequently occurs first by studying particular examples and then by generalizing the patterns that have been observed into far-reaching theorems. Similarly, in teaching mathematics one often employs examples to motivate a general principle or to illustrate its use. This volume uses the same idea in the context of learning how to teach: by analyzing particular teaching situations, one can develop broadly applicable teaching skills useful for the professional mathematician. These teaching situations are the case studies of the title. Just as a good mathematician seeks both to understand the details of a particular problem and to put it in a broader context, the examples presented here are chosen to offer a serious set of detailed teaching issues and to afford analysis from a broad perspective. Each case raises a variety of pedagogical and communication issues that may be explored either individually or in a group facilitated by a faculty member. The methodology of case studies is widely used in areas such as business and law. The consideration of the mathematics cases presented here should help readers to develop teaching skills for their own classrooms.




Knowing and Teaching Elementary Mathematics


Book Description

Studies of teachers in the U.S. often document insufficient subject matter knowledge in mathematics. Yet, these studies give few examples of the knowledge teachers need to support teaching, particularly the kind of teaching demanded by recent reforms in mathematics education. Knowing and Teaching Elementary Mathematics describes the nature and development of the knowledge that elementary teachers need to become accomplished mathematics teachers, and suggests why such knowledge seems more common in China than in the United States, despite the fact that Chinese teachers have less formal education than their U.S. counterparts. The anniversary edition of this bestselling volume includes the original studies that compare U.S and Chinese elementary school teachers’ mathematical understanding and offers a powerful framework for grasping the mathematical content necessary to understand and develop the thinking of school children. Highlighting notable changes in the field and the author’s work, this new edition includes an updated preface, introduction, and key journal articles that frame and contextualize this seminal work.




Research and Development in University Mathematics Education


Book Description

In the last thirty years or so, the need to address the challenges of teaching and learning mathematics at university level has become increasingly appreciated by university mathematics teachers, and beyond, by educational institutions around the world. Indeed, mathematics is both a condition and an obstacle to success for students in many educational programmes vital to the 21st century knowledge society, for example in pure and applied mathematics, engineering, natural sciences, technology, economics, finance, management and so on. This breadth of impact of mathematics implies the urgency of developing research in university mathematics education, and of sharing results of this research widely. This book provides a bespoke opportunity for an international audience of researchers in didactics of mathematics, mathematicians and any teacher or researcher with an interest in this area to be informed about state-of-the-art developments and to heed future research agendas. This book emerged from the activities of the research project INDRUM (acronym for International Network for Didactic Research in University Mathematics), which aims to contribute to the development of research in didactics of mathematics at all levels of tertiary education, with a particular concern for the development of early-career researchers in the field and for dialogue with university mathematicians. The aim of the book is to provide a deep synthesis of the research field as it appears through two INDRUM conferences organised in 2016 and 2018. It is an original contribution which highlights key research perspectives, addresses seminal theoretical and methodological issues and reports substantial results concerning the teaching and learning of mathematics at university level, including the teaching and learning of specific topics in advanced mathematics across a wide range of university programmes.




Writing Mathematically


Book Description

School mathematics curricula internationally tend to emphasise problem-solving and have led to the development of opportunities for children to do maths in a more open, creative way. This has led to increased interest in 'performance-based' assessment, which involves children in substantial production of written language to serve as 'evidence' of their mathematical activity and achievement. However, this raises two important questions. Firstly, does this writing accurately present children's mathematical activity and ability? Secondly, do maths teachers have sufficient linguistic awareness to support their students in developing skills and knowledge necessary for writing effectively in their subject area? The author of this book takes a critical perspective on these questions and, through an investigation of teachers' readings and evaluations of coursework texts, identifies the crucial issues affecting the accurate assessment of school mathematics.