Background Microwave Radiation and Intracluster Cosmology


Book Description

This study is devoted to the Sunyaev-Zeldovich (S-Z) effect, and important related topics in cluster and CMB research. S-Z science is about to be significantly enhanced by unique, multi-faceted cluster and cosmological yield, at a level of precision in accord with the high standards of the current era that was heralded by spectacular achievements in cosmological CMB research. The pedagogical reviews and technical seminars included in this volume represent most of the important current topics in S-Z work and in the astrophysics of clusters. The publication touches upon all relevant aspects of the S-Z effect and its use as a precise cluster and cosmological probe. To commemorate the 40th anniversary of the detection of the CMB by Penzias and Wilson (in 1964), there is a chapter devoted to the history of this discovery. In his fascinating account of their work, he outlines also some lessons pertinent to current scientific issues. Other chapters discuss very interesting related observational work in Europe and the US.




The Cosmic Microwave Background


Book Description

The series of texts composing this book is based on the lectures presented during the II José Plínio Baptista School of Cosmology, held in Pedra Azul (Espírito Santo, Brazil) between 9 and 14 March 2014. This II JBPCosmo has been entirely devoted to the problem of understanding theoretical and observational aspects of Cosmic Background Radiation (CMB).The CMB is one of the most important phenomena in Physics and a fundamental probe of our Universe when it was only 400,000 years old. It is an extraordinary laboratory where we can learn from particle physics to cosmology; its discovery in 1965 has been a landmark event in the history of physics.The observations of the anisotropy of the cosmic microwave background radiation through the satellites COBE, WMAP and Planck provided a huge amount of data which are being analyzed in order to discover important informations regarding the composition of our universe and the process of structure formation.




The Cosmic Microwave Background: 25 Years Later


Book Description

This book is the result of a Meeting held in L'Aquila (Italy) from the 19th to the 23rd of June 1989. The aim of the Meeting was to gather together the people actively working on the Cosmic Microwave Background radiation, both from an experimental and from a theoretical point of view. In view of the intensive current activity in this field, including ongoing (COBE) and forthcoming (RELIC II, ISO, AELITA, etc. ) space missions, a meeting fully dedicated to this important topic was timely. The meeting also celebrated the 25th anniversary of the Microwave Background discovery made in 1964 by the Nobel Prize winners A. Penzias and R. Wilson. We greatly regret that we were not able to have them at the Meeting. There is of course another person whose absence we regret, namely R. H. Dicke, who motivated a generation of experimentalists and theoreticians to open and study this new field of research. As organizers of the Meeting, we would like to express our gratitude to the people who contributed to its success. We want to thank the members of the Scientific Organizing Committee for their assistance, suggestions and encouragement, the invited speakers for their excellent presentations, and the chairmen for their help in handling the various Sessions. We would like to thank P. Palazzi for her help in secretarial work, dr. L.




The Physics of the Cosmic Microwave Background


Book Description

Spectacular observational breakthroughs, particularly by the WMAP satellite, have led to a new epoch of CMB science long after its original discovery. Taking a physical approach, the authors of this volume probe the problem of the 'darkness' of the Universe: the origin and evolution of dark energy and matter in the cosmos. Starting with the observational background of modern cosmology, they provide an accessible review of this fascinating yet complex subject. Topics discussed include the kinetics of the electromagnetic radiation in the Universe, the ionization history of cosmic plamas, the origin of primordial perturbations in light of the inflation paradigm, and the formation of anisotropy and polarization of the CMB. This fascinating review will be valuable to advanced students and researchers in cosmology.




A Primer on the Physics of the Cosmic Microwave Background


Book Description

In the last fifteen years, various areas of high energy physics, astrophysics and theoretical physics have converged on the study of cosmology so that any graduate student in these disciplines today needs a reasonably self-contained introduction to the Cosmic Microwave Background (CMB). This book presents the essential theoretical tools necessary to acquire a modern working knowledge of CMB physics. The style of the book, falling somewhere between a monograph and a set of lecture notes, is pedagogical and the author uses the typical approach of theoretical physics to explain the main problems in detail, touching on the main assumptions and derivations of a fascinating subject. Sample Chapter(s). Chapter 1: Why CMB Physics? (297 KB). Contents: Why CMB Physics?; From CMB to the Standard Cosmological Model; Problems with the SCM; SCM and Beyond; Essentials of Inflationary Dynamics; Inhomogeneities in FRW Models; The First Lap in CMB Anisotropies; Improved Fluid Description of Pre-Decoupling Physics; Kinetic Hierarchies; Early Initial Conditions?; Surfing on the Gauges; Interacting Fluids; Spectator Fields; Appendices: The Concept of Distance in Cosmology; Kinetic Description of Hot Plasmas; Scalar Modes of the Geometry; Metric Fluctuations: Gauge Independent Treatment. Readership: PhD students and researchers in physics, astrophysics and astronomy.




The Cosmic Microwave Background


Book Description

Explanations of the cosmic microwave background prompt this unique case study of theory building in modern science.




3K: The Cosmic Microwave Background Radiation


Book Description

A review covering all aspects of the study of the cosmic background radiation remnant of the hot Big Bang origin of the Universe.