Studies of Thermal Convection in a Rotating Cylinder with Some Implications for Large-Scale Atmospheric Motions


Book Description

The objects of the American Meteorological Society are "the development and dissemination of knowledge of meteorology in all its phases and applications, and the advancement of its professional ideals." The organization of the Society took place in affiliation with the American Association for the Advancement of Science at Saint Louis, Missouri, December 29, 1919, and its incorporation, at Washington, D. C., January 21, 1920. The work of the Society is carried on by the Bulletin, the Journal, and Meteorological Monographs, by papers and discussions at meetings of the Society, through the offices of the Secretary and the Executive Secretary, and by correspondence. All of the Americas are represented in the membership of the Society as well as many foreign countries.




The Theory of Rotating Fluids


Book Description




Advances in Geophysics


Book Description

Advances in Geophysics




Modeling Atmospheric and Oceanic Flows


Book Description

Modeling Atmospheric and Oceanic Flows: Insights from Laboratory Experiments and Numerical Simulations provides a broad overview of recent progress in using laboratory experiments and numerical simulations to model atmospheric and oceanic fluid motions. This volume not only surveys novel research topics in laboratory experimentation, but also highlights recent developments in the corresponding computational simulations. As computing power grows exponentially and better numerical codes are developed, the interplay between numerical simulations and laboratory experiments is gaining paramount importance within the scientific community. The lessons learnt from the laboratory–model comparisons in this volume will act as a source of inspiration for the next generation of experiments and simulations. Volume highlights include: Topics pertaining to atmospheric science, climate physics, physical oceanography, marine geology and geophysics Overview of the most advanced experimental and computational research in geophysics Recent developments in numerical simulations of atmospheric and oceanic fluid motion Unique comparative analysis of the experimental and numerical approaches to modeling fluid flow Modeling Atmospheric and Oceanic Flows will be a valuable resource for graduate students, researchers, and professionals in the fields of geophysics, atmospheric sciences, oceanography, climate science, hydrology, and experimental geosciences.




Monthly Weather Review


Book Description










Recent Research Advances in the Fluid Mechanics of Turbulent Jets and Plumes


Book Description

Challenging problems involvrllg jet and plume phenomena are common to many areas of fundamental and applied scientific research, and an understanding of plume and jet behaviour is essential in many geophysical and industrial contexts. For example, in the field of meteorology, where pollutant dispersal takes place by means of atmospheric jets and plumes formed either naturally under conditions of convectively-driven flow in the atmospheric boundary layer, or anthropogenically by the release of pollutants from tall chimneys. In other fields of geophysics, buoyant plumes and jets are known to play important roles in oceanic mixing processes, both at the relatively large scale (as in deep water formation by convective sinking) and at the relatively small scale (as with plume formation beneath ice leads, for example). In the industrial context, the performances of many engineering systems are determined primarily by the behaviour of buoyant plumes and jets. For example, (i) in sea outfalls, where either sewage or thermal effluents are discharged into marine and/or freshwater environments, (ii) in solar ponds, where buoyant jets are released under density interfaces, (iii) in buildings, where thermally-generated plumes affect the air quality and ventilation properties of architectural environments, (iv) in rotating machinery where fluid jet~ are used for cooling purposes, and (v) in long road and rail tunnels, where safety and ventilation prcedures rely upon an understanding of the behaviour of buoyant jets. In many other engineering and oceanographic contexts, the properties of jets and plumes are of great importance.




The Quaternary of the U.S.


Book Description

This important volume reviews the status of investigations aimed at deciphering the geologic, biogeographic, and archaeological records for the Quaternary Era—the last million years of geologic time-for the area of continental United States. Over eighty Quaternary scientists have contributed to the fifty-five chapters divided into four main parts. Part 1 treats the areal geology, with emphasis on the stratigraphy of the glaciated areas east of the Rocky Mountains, unglaciated eastern and central United States, and western United States. Part 2 deals with biogeography: phytogeography and palynology, animal geography and evolution. Part 3 deals with archaeology prehistory in the northeastern states, southeastern states, plains, desert west, and Pacific Coast including Alaska. Part 4 covers many diverse Quaternary studies on—the continental shelves, isotope geochemistry, paleopedology, the geochemistry of some lake sediments, paleohydrology, glaciers and climate, volcanic-ash chronology, paleomagnetism, neo-tectonics, dendrochronology, and theoretical paleoclimatology. Originally published in 1965. The Princeton Legacy Library uses the latest print-on-demand technology to again make available previously out-of-print books from the distinguished backlist of Princeton University Press. These editions preserve the original texts of these important books while presenting them in durable paperback and hardcover editions. The goal of the Princeton Legacy Library is to vastly increase access to the rich scholarly heritage found in the thousands of books published by Princeton University Press since its founding in 1905.




The Climate Modelling Primer


Book Description

As a consequence of recent increased awareness of the social and political dimensions of climate, many non-specialists discover a need for information about the variety of available climate models. A Climate Modelling Primer, Fourth Edition is designed to explain the basis and mechanisms of all types of current physically-based climate models. A thoroughly revised and updated edition, this book will assist the reader in understanding the complexities and applicabilities of today’s wide range of climate models. Topics covered include the latest techniques for modelling the coupled biosphere-ocean-atmosphere system, information on current practical aspects of climate modelling and ways to evaluate and exploit the results, discussion of Earth System Models of Intermediate Complexity (EMICs), and interactive exercises based on Energy Balance Model (EBM) and the Daisyworld model. Source codes and results from a range of model types allows readers to make their own climate simulations and to view the results of the latest high resolution models. Now in full colour throughout and with the addition of cartoons to enhance student understanding the new edition of this successful textbook enables the student to tackle the difficult subject of climate modeling.