Studies on Composition Operators


Book Description

This book reflects the proceedings of the 1996 Rocky Mountain Mathematics Consortium conference on "Composition Operators on Spaces of Analytic Functions" held at the University of Wyoming. The readers will find here a collection of high-quality research and expository articles on composition operators in one and several variables. The book highlights open questions and new advances in the classical areas and promotes topics which are left largely untreated in the existing texts. In the past two decades, the study of composition operators has experienced tremendous growth. Many connections between the study of these operators on various function spaces and other branches of analysis have been established. Advances in establishing criteria for membership in different operator classes have led to progress in the study of the spectra, adjoints, and iterates of these operators. More recently, connections between these operators and the study of the invariant subspace problem, functional equations, and dynamical systems have been exploited.




Problems and Recent Methods in Operator Theory


Book Description

This volume contains the proceedings of the Workshop on Problems and Recent Methods in Operator Theory, held at the University of Memphis, Memphis, TN, from October 15–16, 2015 and the AMS Special Session on Advances in Operator Theory and Applications, in Memory of James Jamison, held at the University of Memphis, Memphis, TN, from October 17–18, 2015. Operator theory is at the root of several branches of mathematics and offers a broad range of challenging and interesting research problems. It also provides powerful tools for the development of other areas of science including quantum theory, physics and mechanics. Isometries have applications in solid-state physics. Hermitian operators play an integral role in quantum mechanics very much due to their “nice” spectral properties. These powerful connections demonstrate the impact of operator theory in various branches of science. The articles in this volume address recent problems and research advances in operator theory. Highlighted topics include spectral, structural and geometric properties of special types of operators on Banach spaces, with emphasis on isometries, weighted composition operators, multi-circular projections on function spaces, as well as vector valued function spaces and spaces of analytic functions. This volume gives a succinct overview of state-of-the-art techniques from operator theory as well as applications to classical problems and long-standing open questions.




Recent Progress in Functional Analysis


Book Description

This Proceedings Volume contains 32 articles on various interesting areas ofpresent-day functional analysis and its applications: Banach spaces andtheir geometry, operator ideals, Banach and operator algebras, operator andspectral theory, Frechet spaces and algebras, function and sequence spaces.The authors have taken much care with their articles and many papers presentimportant results and methods in active fields of research. Several surveytype articles (at the beginning and the end of the book) will be very usefulfor mathematicians who want to learn "what is going on" in some particularfield of research.




Handbook of the Geometry of Banach Spaces


Book Description

The Handbook presents an overview of most aspects of modernBanach space theory and its applications. The up-to-date surveys, authored by leading research workers in the area, are written to be accessible to a wide audience. In addition to presenting the state of the art of Banach space theory, the surveys discuss the relation of the subject with such areas as harmonic analysis, complex analysis, classical convexity, probability theory, operator theory, combinatorics, logic, geometric measure theory, and partial differential equations. The Handbook begins with a chapter on basic concepts in Banachspace theory which contains all the background needed for reading any other chapter in the Handbook. Each of the twenty one articles in this volume after the basic concepts chapter is devoted to one specific direction of Banach space theory or its applications. Each article contains a motivated introduction as well as an exposition of the main results, methods, and open problems in its specific direction. Most have an extensive bibliography. Many articles contain new proofs of known results as well as expositions of proofs which are hard to locate in the literature or are only outlined in the original research papers. As well as being valuable to experienced researchers in Banach space theory, the Handbook should be an outstanding source for inspiration and information to graduate students and beginning researchers. The Handbook will be useful for mathematicians who want to get an idea of the various developments in Banach space theory.




Reproducing Kernel Spaces and Applications


Book Description

The notions of positive functions and of reproducing kernel Hilbert spaces play an important role in various fields of mathematics, such as stochastic processes, linear systems theory, operator theory, and the theory of analytic functions. Also they are relevant for many applications, for example to statistical learning theory and pattern recognition. The present volume contains a selection of papers which deal with different aspects of reproducing kernel Hilbert spaces. Topics considered include one complex variable theory, differential operators, the theory of self-similar systems, several complex variables, and the non-commutative case. The book is of interest to a wide audience of pure and applied mathematicians, electrical engineers and theoretical physicists.




Topological Dynamics and Applications


Book Description

This book is a very readable exposition of the modern theory of topological dynamics and presents diverse applications to such areas as ergodic theory, combinatorial number theory and differential equations. There are three parts: 1) The abstract theory of topological dynamics is discussed, including a comprehensive survey by Furstenberg and Glasner on the work and influence of R. Ellis. Presented in book form for the first time are new topics in the theory of dynamical systems, such as weak almost-periodicity, hidden eigenvalues, a natural family of factors and topological analogues of ergodic decomposition. 2) The power of abstract techniques is demonstrated by giving a very wide range of applications to areas of ergodic theory, combinatorial number theory, random walks on groups and others. 3) Applications to non-autonomous linear differential equations are shown. Exposition on recent results about Floquet theory, bifurcation theory and Lyapanov exponents is given.




Lectures on Analytic Function Spaces and their Applications


Book Description

The focus program on Analytic Function Spaces and their Applications took place at Fields Institute from July 1st to December 31st, 2021. Hilbert spaces of analytic functions form one of the pillars of complex analysis. These spaces have a rich structure and for more than a century have been studied by many prominent mathematicians. They have essential applications in other fields of mathematics and engineering. The most important Hilbert space of analytic functions is the Hardy class H2. However, its close cousins—the Bergman space A2, the Dirichlet space D, the model subspaces Kt, and the de Branges-Rovnyak spaces H(b)—have also garnered attention in recent decades. Leading experts on function spaces gathered and discussed new achievements and future venues of research on analytic function spaces, their operators, and their applications in other domains. With over 250 hours of lectures by prominent mathematicians, the program spanned a wide variety of topics. More explicitly, there were courses and workshops on Interpolation and Sampling, Riesz Bases, Frames and Signal Processing, Bounded Mean Oscillation, de Branges-Rovnyak Spaces, Blaschke Products and Inner Functions, and Convergence of Scattering Data and Non-linear Fourier Transform, among others. At the end of each week, there was a high-profile colloquium talk on the current topic. The program also contained two advanced courses on Schramm Loewner Evolution and Lattice Models and Reproducing Kernel Hilbert Space of Analytic Functions. This volume features the courses given on Hardy Spaces, Dirichlet Spaces, Bergman Spaces, Model Spaces, Operators on Function Spaces, Truncated Toeplitz Operators, Semigroups of weighted composition operators on spaces of holomorphic functions, the Corona Problem, Non-commutative Function Theory, and Drury-Arveson Space. This volume is a valuable resource for researchers interested in analytic function spaces.




Trends in the Representation Theory of Finite Dimensional Algebras


Book Description

This refereed collection of research papers and survey articles reflects the interplay of finite-dimensional algebras with other areas (algebraic geometry, homological algebra, and the theory of quantum groups). Current trends are presented from the discussions at the AMS-IMS-SIAM Joint Summer Research Conference at the University of Washington (Seattle). The volume features several excellent expository articles which will introduce inspiration to researchers in related areas, as it includes original papers spanning a broad spectrum of representation theory.







Nonlinear Wave Equations


Book Description

This volume presents original research papers and expository articles from the conference in honour of Walter A. Strauss's 60th birthday, held at Brown University in Providence, Rhode Island. The book offers a collection of original papers and expository articles mainly devoted to the study of nonlinear wave equations. The articles cover a wide range of topics, including scattering theory, dispersive waves, classical field theory, mathematical fluid dynamics, kinetic theory, stability theory, and variational methods. The book offers a cross-section of current trends and research directions in the study of nonlinear wave equations and related topics.