Millets and Sorghum


Book Description

Millets and sorghum are extremely important crops in many developing nations and because of the ability of many of them to thrive in low-moisture situations they represent some exciting opportunities for further development to address the continuing and increasing impact of global temperature increase on the sustainability of the world’s food crops. The main focus of this thorough new book is the potential for crop improvement through new and traditional methods, with the book’s main chapters covering the following crops: sorghum, pearl millet, finger millet, foxtail milet, proso millet, little millet, barnyard millet, kodo millet, tef and fonio. Further chapters cover pests and diseases, nutritional and industrial importance, novel tools for improvement, and seed systems in millets. Millets and Sorghum provides full and comprehensive coverage of these crucially important crops, their biology, world status and potential for improvement, and is an essential purchase for crop and plant scientists, and food scientists and technologists throughout the developed and developing world. All libraries in universities and research establishment where biological and agricultural sciences are studied and taught should have copies of this important book on their shelves.




Effect of Environmental Stress and Management on Grain and Biomass Yield of Finger Millet (Eleusine Coracana (L.) Gaertn.)


Book Description

Productivity of grain crops is highly sensitive to changing climates and crop management practices. Response of finger millet [Eleusine coracana (L.) Gaertn.] to high temperature stress, and intensive management practices such as increased seeding rates and fertilizer application are not clearly understood. The objectives of this research were to determine the effects of (a) season-long, and short episodes of high temperature stress on growth and yield traits of finger millet, (b) seeding rates and nitrogen fertilizer application rates on grain and biomass yield, and (c) to evaluate the finger millet minicore collection for high grain and biomass yield. Controlled environment studies were conducted to determine the effects of high temperature stress on physiological, growth and yield traits. Field studies were conducted in Manhattan and Hays (Kansas) and Alupe (Kenya) to determine the effects of seeding and nitrogen fertilizer rates on growth and yield traits. Finger millet minicore collection was evaluated under field conditions in India, for phenology, growth and yield traits. Season long high temperature stress of 36/26 or 38/28°C compared to 32/22°C decreased panicle emergence, number of seeds per panicle, grain yield and harvest index. Finger millet was most sensitive to short episodes (10 d) of high temperature (40/30°C) during booting, panicle emergence and flowering stages, resulting in lower number of seeds, and grain yield. Finger millet responded to the interaction between environmental (locations) and temporal (years) factors. In general, locations with higher rainfall had greater grain and biomass yield than those with low rainfall. There was no influence of seeding rates (3.2 or 6.0 kg ha−1) at Hays and Alupe. However, in one of the two years in Manhattan, higher seeding rate of 6.0 kg ha−1 increased grain yield compared to 3.2 kg ha−1. There was no influence of nitrogen rates (0, 30, 60 or 90 kg ha−1) on grain or biomass yield at all three locations. However, higher fertilizer rates had greater percentage lodging. The finger millet minicore collection displayed large ranges for most quantitative traits including days to flowering, plant height, number of fingers panicle−1, grain yield, biomass yield, and lodging; and had>60% heritability. Some of the genotypes from the minicore collection have the potential to increase grain and biomass yield and abiotic stress tolerance of finger millet.













The Finger Millet Genome


Book Description

This book is the first comprehensive compilation of deliberations on domestication, genetic and genomic resources, breeding, genetic diversity, molecular maps & mapping of important biotic stress as well as nutritional quality traits, genome sequencing, comparative genomics, functional genomics and genetic transformation. The economic, nutritional and health benefits especially antioxidants mediated antiaging effects of finger millet are also discussed. It also presents the input use efficiency, wide adaptation, post-harvest processing and value addition of the crop. Altogether, the book contains about 300 pages over 16 chapters authored by globally reputed experts on the relevant field in this crop. This book is useful to the students, teachers and scientists in the academia and relevant private companies interested in genetics, pathology, molecular genetics and breeding, genetic engineering, structural and functional genomics and nutritional quality aspects of the crop. This book is also useful to seed and pharmaceutical industries.