Inclusions in Prokaryotes


Book Description

The new series "Microbiology Monographs" begins with two volumes on intracellular components in prokaryotes. In this first volume, "Inclusions in Prokaryotes", the components, labeled inclusions, are defined as discrete bodies resulting from synthesis of a metabolic product. Research on the biosynthesis and reutilization of the accumulated materials is still in progress, and interest in the inclusions is growing. This comprehensive volume provides historical background and comprehensive reviews of eight well-known prokaryotic inclusions.




Biogenesis of Fatty Acids, Lipids and Membranes


Book Description

Concise chapters, written by experts in the field, cover a wide spectrum of topics on lipid and membrane formation in microbes (Archaea, Bacteria, eukaryotic microbes).All cells are delimited by a lipid membrane, which provides a crucial boundary in any known form of life. Readers will discover significant chapters on microbial lipid-carrying biomolecules and lipid/membrane-associated structures and processes.




Organization of Prokaryotic Cell Membranes


Book Description

These volumes include a collection of authoritative articles covering the most active areas of prokaryotic biomembrane investigations, and will provide a great service not only to those interested in the field but also to microbiologists in general. These monographs will also serve to focus attention on prokaryotic membranes that are so often ignored by eukaryoticmembraneologists and proved an excellent reference source for many years to come.




Stimulated Raman Scattering Microscopy


Book Description

Stimulated Raman Scattering Microscopy: Techniques and Applications describes innovations in instrumentation, data science, chemical probe development, and various applications enabled by a state-of-the-art stimulated Raman scattering (SRS) microscope. Beginning by introducing the history of SRS, this book is composed of seven parts in depth including instrumentation strategies that have pushed the physical limits of SRS microscopy, vibrational probes (which increased the SRS imaging functionality), data science methods, and recent efforts in miniaturization. This rapidly growing field needs a comprehensive resource that brings together the current knowledge on the topic, and this book does just that. Researchers who need to know the requirements for all aspects of the instrumentation as well as the requirements of different imaging applications (such as different types of biological tissue) will benefit enormously from the examples of successful demonstrations of SRS imaging in the book. Led by Editor-in-Chief Ji-Xin Cheng, a pioneer in coherent Raman scattering microscopy, the editorial team has brought together various experts on each aspect of SRS imaging from around the world to provide an authoritative guide to this increasingly important imaging technique. This book is a comprehensive reference for researchers, faculty, postdoctoral researchers, and engineers. - Includes every aspect from theoretic reviews of SRS spectroscopy to innovations in instrumentation and current applications of SRS microscopy - Provides copious visual elements that illustrate key information, such as SRS images of various biological samples and instrument diagrams and schematics - Edited by leading experts of SRS microscopy, with each chapter written by experts in their given topics




Organelle Contact Sites


Book Description

This book provides the first comprehensive coverage of the quickly evolving research field of membrane contact sites (MCS). A total of 16 chapters explain their organization and role and unveil the significance of MCS for various diseases. MCS, the intracellular structures where organellar membranes come in close contact with one another, mediate the exchange of proteins, lipids, and ions. Via these functions, MCS are critical for the survival and the growth of the cell. Owing to that central role in the functioning of cells, MCS dysfunctions lead to important defects of human physiology, influence viral and bacterial infection, and cause disease such as inflammation, type II diabetes, neurodegenerative disorders, and cancer. To approach such a multifaceted topic, this volume assembles a series of chapters dealing with the full array of research about MCS and their respective roles for diseases. Most chapters also introduce the history and the state of the art of MCS research, which will initiate discussion points for the respective types of MCS for years to come. This work will appeal to all cell biologists as well as researchers on diseases that are impacted by MCS dysfunction. Additionally, it will stimulate graduate students and postdocs who will energize, drive, and develop the research field in the near future.




Microbiology


Book Description

"Microbiology covers the scope and sequence requirements for a single-semester microbiology course for non-majors. The book presents the core concepts of microbiology with a focus on applications for careers in allied health. The pedagogical features of the text make the material interesting and accessible while maintaining the career-application focus and scientific rigor inherent in the subject matter. Microbiology's art program enhances students' understanding of concepts through clear and effective illustrations, diagrams, and photographs. Microbiology is produced through a collaborative publishing agreement between OpenStax and the American Society for Microbiology Press. The book aligns with the curriculum guidelines of the American Society for Microbiology."--BC Campus website.




Bacterial Cell Wall


Book Description

Studies of the bacterial cell wall emerged as a new field of research in the early 1950s, and has flourished in a multitude of directions. This excellent book provides an integrated collection of contributions forming a fundamental reference for researchers and of general use to teachers, advanced students in the life sciences, and all scientists in bacterial cell wall research. Chapters include topics such as: Peptidoglycan, an essential constituent of bacterial endospores; Teichoic and teichuronic acids, lipoteichoic acids, lipoglycans, neural complex polysaccharides and several specialized proteins are frequently unique wall-associated components of Gram-positive bacteria; Bacterial cells evolving signal transduction pathways; Underlying mechanisms of bacterial resistance to antibiotics.




Handbook of Microalgae-Based Processes and Products


Book Description

The Handbook of Microalgae-based Processes and Products provides a complete overview of all aspects involved in the production and utilization of microalgae resources at commercial scale. Divided into four parts (fundamentals, microalgae-based processes, microalgae-based products, and engineering approaches applied to microalgal processes and products), the book explores the microbiology and metabolic aspects of microalgae, microalgal production systems, wastewater treatment based in microalgae, CO2 capture using microalgae, microalgae harvesting techniques, and extraction and purification of biomolecules from microalgae. It covers the largest number of microalgal products of commercial relevance, including biogas, biodiesel, bioethanol, biohydrogen, single-cell protein, single-cell oil, biofertilizers, pigments, polyunsaturated fatty acids, bioactive proteins, peptides and amino acids, bioactive polysaccharides, sterols, bioplastics, UV-screening compounds, and volatile organic compounds. Moreover, it presents and discusses the available engineering tools applied to microalgae biotechnology, such as process integration, process intensification, and techno-economic analysis applied to microalgal processes and products, microalgal biorefineries, life cycle assessment, and exergy analysis of microalgae-based processes and products. The coverage of a broad range of potential microalgae processes and products in a single volume makes this handbook an indispensable reference for engineering researchers in academia and industry in the fields of bioenergy, sustainable development, and high-value compounds from biomass, as well as graduate students exploring those areas. Engineering professionals in bio-based industries will also find valuable information here when planning or implementing the use of microalgal technologies. - Covers theoretical background information and results of recent research. - Discusses all commercially relevant microalgae-based processes and products. - Explores the main emerging engineering tools applied to microalgae processes, including techno-economic analysis, process integration, process intensification, life cycle assessment, and exergy analyses.




Industrial Applications of Single Cell Oils


Book Description

Papers from the 82nd Annual Meeting of the American Oil Chemists' Society in Chicago, IL, May 1992. Because of production costs, microbial oils probably won't replace vegetable oils for general use; but designer oils for specific industrial and nutritional purposes are on the horizon using bacteria, fungi, yeast, and microalgae as production organisms. The ability to manipulate microbial culture conditions and genetically modify the organisms means that oils can be developed to fit particular applications. These 16 contributions discussing current research would be enhanced by an index. Annotation copyright by Book News, Inc., Portland, OR




Biogenesis of Hydrocarbons


Book Description

The book covers the microbiological, environmental and biotechnological aspects of alkane production. Alkanes are important energy-rich compounds on earth. Microbial synthesis of methane and other alkanes is an essential part of the geochemical cycling of carbon and offers perspectives for our biobased economy. This book discusses different aspects of current knowledge of microbial alkane production. Chapters with state of the art information are written by renowned scientists in the field. The chapters are organised into four themed parts:1. Biochemistry of Biogenesis - Hydrocarbons2. Taxonomy, Ecophysiology and Genomics of Biogenesis - Hydrocarbons3. Biogenic Communities: Members, Functional Roles4. Global Consequences of Methane Production