Search for Time-dependent Fluctuations in Cosmic Ray Flux with the AMS-01 Detector and Construction of the AMS-02 Detector


Book Description

The soalr activity is known to influence the cosmic-ray flux on earth up to energies of 50 GeV per nucleon. The AMS-01 detector, which was flown on board the NASA Space Shuttle "Discovery" in June 1998, is sensitive to the highest energy range of solar particle events. Systematic flux fluctuations for the main cosmic-ray components (protons, helium nuclei and electrons) have been searched in the energy range accessible to the AMS-01 detector (from 100 Mev per nucleon to 200 GeV per nucleon) for the time interval for which suitable AMS-01 data are available (from June 8 to June 12, 1998). Systematic variations of cosmic-ray flux have been observed in the energy range below the geomagnetic cutoff. The comparison to the geomagnetic activity of the time has shown a correlation between systematic flux decreases and magnetic distrurbances of solar origin.




Solar Cosmic Rays


Book Description

It turned out to be really a rare and happy occasion that we know exact1y when and how a new branch of space physics was born, namely, a physics of solar cosmic rays. It happened on February 28 and March 7, 1942 when the fIrst "cosmic ray bursts" were recorded on the Earth, and the Sun was unambiguously identifIed for the fIrst time as the source of high-velocity 10 particles with energies up to > 10 eV. Just due to such a high energy these relativistic particles have been called "solar cosmic rays" (SCR), in distinction from the "true" cosmic rays of galactic origin. Between 1942 and the beginning ofthe space era in 1957 only extremely high energy solar particle events could be occasionally recorded by cosmic ray ground-Ievel detectors and balloon borne sensors. Since then the detection techniques varied considerably and the study of SCR turned into essential part of solar and solar-terrestrial physics.




Cosmic Rays


Book Description




High Energy Cosmic Rays


Book Description

Offers an accessible text and reference (a cosmic-ray manual) for graduate students entering the field and high-energy astrophysicists will find this an accessible cosmic-ray manual Easy to read for the general astronomer, the first part describes the standard model of cosmic rays based on our understanding of modern particle physics. Presents the acceleration scenario in some detail in supernovae explosions as well as in the passage of cosmic rays through the Galaxy. Compares experimental data in the atmosphere as well as underground are compared with theoretical models




Particle Physics Reference Library


Book Description

This second open access volume of the handbook series deals with detectors, large experimental facilities and data handling, both for accelerator and non-accelerator based experiments. It also covers applications in medicine and life sciences. A joint CERN-Springer initiative, the "Particle Physics Reference Library" provides revised and updated contributions based on previously published material in the well-known Landolt-Boernstein series on particle physics, accelerators and detectors (volumes 21A, B1,B2,C), which took stock of the field approximately one decade ago. Central to this new initiative is publication under full open access




Origin of Cosmic Rays


Book Description




Space Physics and Aeronomy, Space Weather Effects and Applications


Book Description

Examines how solar and terrestrial space phenomena affect sophisticated technological systems Contemporary society relies on sophisticated technologies to manage electricity distribution, communication networks, transportation safety, and myriad other systems. The successful design and operation of both ground-based and space-based systems must consider solar and terrestrial space phenomena and processes. Space Weather Effects and Applications describes the effects of space weather on various present-day technologies and explores how improved instrumentation to measure Earth's space environment can be used to more accurately forecast changes and disruptions. Volume highlights include: Damage and disruption to orbiting satellite equipment by solar particles and cosmic rays Effects of space radiation on aircraft at high altitudes and latitudes Response of radio and radar-based systems to solar bursts Disturbances to the propagation of radio waves caused by space weather How geomagnetic field changes impact ground-based systems such as pipelines Impacts of human exposure to the space radiation environment The American Geophysical Union promotes discovery in Earth and space science for the benefit of humanity. Its publications disseminate scientific knowledge and provide resources for researchers, students, and professionals. Find out more about the Space Physics and Aeronomy collection in this Q&A with the Editors in Chief