Study of the Extreme Gamma-ray Emission from Supernova Remnants and the Crab Pulsar


Book Description

In our Galaxy, supernova remnants and pulsars are the two most numerous populations of non-thermal objects. The goal of this thesis is to study the extreme gamma-ray emission from these two astrophysical objects with Fermi -LAT and MAGIC. In particular, supernova remnants Cassiopeia A and SNR G24.7+0.6 and the Crab pulsar. Cassiopeia A, one of the historical supernova remnants and the prime candidate of its class to be a PeVatron accelerator, has been discarded as so since we provided the first measurement of a turn-off in the gamma-ray spectrum at 3 TeV, implying the emission observed is produced by the decay of neutral pions, produced in proton- proton interactions of a parent population of accelerated protons with an energy cut-off at about 10TeV. Such a maximum energy of accelerated cosmic rays in Cassiopeia A falls short to explain the high energy end ( PeV) of the Galactic cosmic ray spectrum. Considering that Cassiopeia A was the main PeVatron candidate, the results obtained in this work challenge the existence of supernova remnants as galactic Pevatrons and therefore the popular conviction that supernova remnants are the main source of Galactic cosmic ray up to the knee. In the case of SNR G24.7+0.6, the remnant is evolving in a dense medium and might be interacting with the CO-rich surrounding. The observations performed allowed us to detect for the first time the counterpart of the radio emission, MAGIC J1835–069, from 60MeV up to 5TeV. This very high energy emission results from proton-proton interactions between the runaway protons from the supernova remnant and a nearby molecular cloud. These observations of the field of view of SNR G24.7+0.6, also resulted in the detection of another new source, MAGIC J1837–073, that is likely to be associated with a stellar cluster as suggested by its localization in a region rich in molecular content and crowded of sources. The total energy obtained in accelerated protons can be explained assuming a quasi-continuous injection of cosmic rays during the cluster lifetime. The second part of this thesis is focused on the study and understanding of the Crab pulsar, the young and most energetic pulsar in our galaxy. Observations carried out with MAGIC resulted in the first ever detection of very energetic pulsed emission from a pulsar, reaching up to about 1.5 TeV. Moreover, the light curve of the Crab above 400 GeV shows two peaks synchronized with those measured at lower energies. Such extremely energetic pulsed emission has to be produced by electrons with very high Lorentz factor scattering low energy photons in the vicinity of the light cylinder, either inside or outside of it. Currently, none of the postulated models is yet capable of reproducing at the same time the light curve and the spectral shape for both peaks above 400 GeV.




Supernova Remnants and their X-Ray Emission


Book Description

IAU Symposium 101, Supernova Remnants and Their X-ray Emission, was held on the Island of San Giorgio, Venice, 30 August - 2 September 1982. It was co-sponsored by the National Research Council, Italy, the University of Padua, the Observatory of Padua, and the International Astronomical Union, and was hosted by the Cini Foundation. The contents of this volume show the wide range of disciplines that are involved in supernova remnant research. Many new results were presented, not only from the X-ray observations from the Einstein Observatory but also from observations at optical and radio wavelengths. This has led to the stimulation of theoretical work, much of which attempts to accommodate in a more unified way all of these observations. Research on supernova remnants of all ages was reported. Perhaps the most impressive part of all this work is the way in which observations at all wavelengths have extended well outside the Galaxy to other members of the Local Group and beyond. The Symposium was attended by scientists from 15 countries. Twenty five invited papers and sixty-eight shorter contributions were presented during the 4-day meeting. Thirty-three of these shorter contributions were presented in poster sessions. This volume contains almost all (89) of those contributions. They are followed by discussions which took place after each verbal presentation. Since the availability of the discussions was left to the individual contributors, they are not complete, but those contained in this volume convey some idea of the nature of the exchanges.




Supernovae and Gamma-Ray Bursters


Book Description

Since the dawn of mankind, observers of the sky have wondered at the sudden appearance of new stars on the seemingly unchanging heavens and, for at least 2000 years, have recorded these phenomena in their annals and archives. Even in more modern times, since the discovery of SN1885A in S Andromeda which ?gured in the important “island universe” discussions of the 1920’s, the puzzle of supernovae (SNe) has played an important role in astrophysics. Only with the seminal work of Fritz Zwicky and Walter Baade in the 1930’s did we begin to understand the di?erences between novae and SNe and the importance of SNe as the fonts of energy for the interstellar medium and as drivers of chemical evolution in galaxies. As recently as the 1940’s and 1950’s the early days of radio astronomy were heavily in?uenced by the familiar names of Cassiopeia A and Taurus A, two young supernova remnants, and two Nobel prizes have been awarded for discovery and study of a related phenomenon, pulsars. In spite of the great age of the study of SNe, since at least the Chinese records of SN185and probably earlier, the ?eld is, in fact, very young having only attracted a large devoted following since the spectacular Type II SN1987A in the Large Magellanic Cloud, the ?rst naked-eye SN in more than 400 years.




Very High Energy Cosmic Gamma Radiation


Book Description

Gamma ray astronomy, the branch of high energy astrophysics that studies the sky in energetic Ýgamma¨-ray photons, is destined to play a crucial role in the exploration of nonthermal phenomena in the Universe in their most extreme and violent forms. This book presents the motivations and highlights the principal objectives of the field, as well as demonstrates its intrinsic links to other branches of high energy astrophysics. Preference is given to three topical areas: (i) origin of cosmic rays: (ii) physics and astrophysics of relativistic jets: (iii) observational gamma ray cosmology. Also, a significant part of the book is devoted to the discussion of the principal mechanisms of production and absorption of energetic Ýgamma¨-rays in different astrophysical environments, as well as to the description of the detection methods of high energy cosmic Ýgamma¨- radiation.




Science With The New Generation Of High Energy Gamma-ray Experiments: The Variable Gamma-ray Sources: Their Identifications And Counterparts - Proceedings Of The Fourth Workshop


Book Description

The research program in gamma-ray astronomy focuses on increasing our knowledge of the nature and origin of galactic and extragalactic gamma rays, and understanding high-energy processes in the Sun, celestial objects, interstellar medium, and extragalactic space.This book not only provides an overview of the latest research and future plans for space-borne and ground-based experiments dedicated to the observation of the gamma-ray sky, but also addresses the topic of variable gamma-ray sources from the perspective of their identification and counterparts at different wavelengths. It further gives an overview of the theory related to the most qualified emission processes that take place in these sources and of the nature of their variability.







Supernovae


Book Description

Contains two reviews of astrophysical interest: Supernovae and Supernova Remnants, and Observations of Cosmic Gamma-Ray Bursts. (NW) Annotation copyrighted by Book News, Inc., Portland, OR




Essential Radio Astronomy


Book Description

The ideal text for a one-semester course in radio astronomy Essential Radio Astronomy is the only textbook on the subject specifically designed for a one-semester introductory course for advanced undergraduates or graduate students in astronomy and astrophysics. It starts from first principles in order to fill gaps in students' backgrounds, make teaching easier for professors who are not expert radio astronomers, and provide a useful reference to the essential equations used by practitioners. This unique textbook reflects the fact that students of multiwavelength astronomy typically can afford to spend only one semester studying the observational techniques particular to each wavelength band. Essential Radio Astronomy presents only the most crucial concepts—succinctly and accessibly. It covers the general principles behind radio telescopes, receivers, and digital backends without getting bogged down in engineering details. Emphasizing the physical processes in radio sources, the book's approach is shaped by the view that radio astrophysics owes more to thermodynamics than electromagnetism. Proven in the classroom and generously illustrated throughout, Essential Radio Astronomy is an invaluable resource for students and researchers alike. The only textbook specifically designed for a one-semester course in radio astronomy Starts from first principles Makes teaching easier for astronomy professors who are not expert radio astronomers Emphasizes the physical processes in radio sources Covers the principles behind radio telescopes and receivers Provides the essential equations and fundamental constants used by practitioners Supplementary website includes lecture notes, problem sets, exams, and links to interactive demonstrations An online illustration package is available to professors




Very High Energy Phenomena in the Universe


Book Description




Shock-Cloud Interaction in RX J1713.7−3946


Book Description

This book presents a study of the young supernova remnant RX J1713.7-3946 in order to reveal the origin of cosmic rays in our galaxy. The study focuses on the X-ray and gamma radiation from the cosmic ray electrons and protons in the supernova remnant as well as the emission from the surrounding interstellar gas measured by the NANTEN2 4-m radio telescope at Nagoya University. The gamma rays show a good spatial correspondence with the interstellar gas, which for the first time provides strong evidence of the acceleration of cosmic ray protons. Additionally, the author determines that an interaction between the supernova shockwaves and interstellar gas, referred to as “shock-cloud interaction,” promotes the efficient acceleration of cosmic ray electrons in the supernova remnant. The book reveals that the interstellar gas plays an essential role in producing the high-energy radiation and cosmic rays, offering vital new insights into the origin and behavior of galactic cosmic rays.