Study on Magnetohydrodynamic Turbulence and Its Astrophysical Applications


Book Description

Turbulence and magnetic fields are ubiquitous in the Universe. Their importance to astronomy cannot be overestimated. The theoretical advancements in magnetohydrodynamic (MHD) turbulence achieved during the past two decades have significantly influenced many fields of astronomy. This book provides predictive theories of the magnetic field generation by turbulence and the dissipation of MHD turbulence. These fundamental non-linear problems were believed to be tractable only numerically. This book provides complete analytical descriptions in quantitative agreement with existing numerics, as well as theoretical predictions in physical regimes still unreachable by simulations, and explanations of various related observations. It also discusses and promotes the astrophysical applications of MHD turbulence theories, including (i) the particle acceleration and radiation in high-energy phenomena, e.g., Gamma-Ray Bursts, supernova remnants, cosmic rays; (ii) interstellar density fluctuations and the effect on observations, e.g., Faraday rotation, scattering measurements of Galactic and extragalactic radio sources; (iii) density and magnetic field structure in molecular clouds toward star formation. In closing, this book demonstrates the key role of MHD turbulence in connecting diverse astrophysical processes and unraveling long-standing astrophysical problems, as foreseen by Chandrasekhar, a founder of modern astrophysics.




Magnetohydrodynamic Turbulence


Book Description

This book presents an introduction to, and modern account of, magnetohydrodynamic (MHD) turbulence, an active field both in general turbulence theory and in various areas of astrophysics. The book starts by introducing the MHD equations, certain useful approximations and the transition to turbulence. The second part of the book covers incompressible MHD turbulence, the macroscopic aspects connected with the different self-organization processes, the phenomenology of the turbulence spectra, two-point closure theory, and intermittency. The third considers two-dimensional turbulence and compressible (in particular, supersonic) turbulence. Because of the similarities in the theoretical approach, these chapters start with a brief account of the corresponding methods developed in hydrodynamic turbulence. The final part of the book is devoted to astrophysical applications: turbulence in the solar wind, in accretion disks, and in the interstellar medium. This book is suitable for graduate students and researchers working in turbulence theory, plasma physics and astrophysics.




Cosmic Ray Astrophysics


Book Description

In the first part, the book gives an up-to-date summary of the observational data. In the second part, it deals with the kinetic description of cosmic ray plasma. The underlying diffusion-convection transport equation, which governs the coupling between cosmic rays and the background plasma, is derived and analyzed in detail. In the third part, several applications of the solutions of the transport equation are presented and how key observations in cosmic ray physics can be accounted for is demonstrated.




An Introduction to Magnetohydrodynamics


Book Description

This book is an introductory text on magnetohydrodynamics (MHD) - the study of the interaction of magnetic fields and conducting fluids.







Modern Fluid Dynamics for Physics and Astrophysics


Book Description

This book grew out of the need to provide students with a solid introduction to modern fluid dynamics. It offers a broad grounding in the underlying principles and techniques used, with some emphasis on applications in astrophysics and planetary science. The book comprehensively covers recent developments, methods and techniques, including, for example, new ideas on transitions to turbulence (via transiently growing stable linear modes), new approaches to turbulence (which remains the enigma of fluid dynamics), and the use of asymptotic approximation methods, which can give analytical or semi-analytical results and complement fully numerical treatments. The authors also briefly discuss some important considerations to be taken into account when developing a numerical code for computer simulation of fluid flows. Although the text is populated throughout with examples and problems from the field of astrophysics and planetary science, the text is eminently suitable as a general introduction to fluid dynamics. It is assumed that the readers are mathematically equipped with a reasonable knowledge in analysis, including basics of ordinary and partial differential equations and a good command of vector calculus and linear algebra. Each chapter concludes with bibliographical notes in which the authors briefly discuss the chapter's essential literature and give recommendations for further, deeper reading. Included in each chapter are a number of problems, some of them relevant to astrophysics and planetary science. The book is written for advanced undergraduate and graduate students, but will also prove a valuable source of reference for established researchers.




Turbulence in Magnetohydrodynamics


Book Description

Magnetohydrodynamics describes dynamics in electrically conductive fluids. These occur in our environment as well as in our atmosphere and magnetosphere, and play a role in the sun's interaction with our planet. In most cases these phenomena involve turbulences, and thus are very challenging to understand and calculate. A sound knowledge is needed to tackle these problems. This work gives the basic information on turbulence in nature, comtaining the needed equations, notions and numerical simulations. The current state of our knowledge and future implications of MHD turbulence are outlined systematically. It is indispensable for all scientists engaged in research of our atmosphere and in space science.







Interstellar Processes


Book Description

The idea for an international symposium on the interstellar medium was first discussed at the University of Wyoming during the summer of 1984. It was obvious that the outstanding natural beauty of the Teton mountain range in northwestern Wyoming must be matched by a meeting with the broadest appeal to the astronomical community. If the meeting was to produce a book, it must likewise be an important contribution to the astronomical literature. It was for these reasons that early in the discussions, it was decided that the University should host a "school". with the invited speakers presenting tutorials on a broad range of topics involving the interstellar medium. The symposium proceedings would then be a compilation of the written versions of these presentations. It has been nearly a decade since Lyman Spitzer published his classic text on the interstellar medium and we felt the need for a school and book that would focus on the recent developments in our understanding of the inter stellar medium. Thus, we view this two-volume set as an adjunct text to Spitzer's book.




High Energy Density Laboratory Astrophysics


Book Description

This work will be of interest to a wide range of academics. It provides a comprehensive round-up of the proceedings and papers delivered at the 2006 Conference on High Energy Density Laboratory Astrophysics, held at Rice University in Houston, Texas, USA. The contributions come from scientists interested in this emerging field. They discuss the progress in topics covering everything from stellar evolution and envelopes, to opacities, radiation transport and x-ray photoionized plasmas.