The Biodiesel Handbook


Book Description

The second edition of this invaluable handbook covers converting vegetable oils, animal fats, and used oils into biodiesel fuel. The Biodiesel Handbook delivers solutions to issues associated with biodiesel feedstocks, production issues, quality control, viscosity, stability, applications, emissions, and other environmental impacts, as well as the status of the biodiesel industry worldwide. - Incorporates the major research and other developments in the world of biodiesel in a comprehensive and practical format - Includes reference materials and tables on biodiesel standards, unit conversions, and technical details in four appendices - Presents details on other uses of biodiesel and other alternative diesel fuels from oils and fats




Biokerosene


Book Description

This book provides a detailed overview of aspects related to the overall provision chain for biokerosene as part of the global civil aviation business. Starting with a review of the current market situation for aviation fuels and airplanes and their demands, it then presents in-depth descriptions of classical and especially new types of non-edible biomass feedstock suitable for biokerosene provision. Subsequent chapters discuss those fuel provision processes that are already available and those still under development based on various biomass feedstock materials, and present e.g. an overview of the current state of the art in the production of a liquid biomass-based fuel fulfilling the specifications for kerosene. Further, given the growing interest of the aviation industry and airlines in biofuels for aviation, the experiences of an air-carrier are presented. In closing, the book provides a market outlook for biokerosene. Addressing a broad range of aspects related to the pros and cons of biokerosene as a renewable fuel for aviation, the book offers a unique resource.




Biodiesel, Combustion, Performance and Emissions Characteristics


Book Description

This book focuses on biodiesel combustion, including biodiesel performance, emissions and control. It brings together a range of international research in combustion studies in order to offer a comprehensive resource for researchers, students and academics alike. The book begins with an introduction to biodiesel combustion, followed by a discussion of NOx formation routes. It then addresses biodiesel production processes and oil feedstocks in detail, discusses the physiochemical properties of biodiesel, and explores the benefits and drawbacks of these properties. Factors influencing the formation of emissions, including NOx emissions, are also dealt with thoroughly. Lastly, the book discusses the mechanisms of pollution and different approaches used to reduce pollutants in connection with biodiesel. Each approach is considered in detail, and diagrams are provided to illustrate the points in line with industry standard control mechanisms.




Analysis of Particulate Matter Emission in Diesel Engine Operated with Waste Cooking Oil Biodiesel


Book Description

Diesel engines which is an attractive power unit used widely in many fields are among the main contributors to air pollutions for the large amount of emissions, especially particulate matter (PM) and nitrogen oxides (NOx). PM is one of the major pollutants emitted by diesel engine which have adverse effects on human health. Accordingly, many research have been done to find alternative fuels that are clean and efficient. In this study, waste cooking oil (WCO) biodiesel has been used as an alternative source for diesel engine which produces lower PM than diesel fuel. The emission of PM and gaseous emission (carbon monoxide (CO), carbon dioxide (CO2), nitric oxide (NO) and NOx) has been collected from single cylinder diesel engine fuelled with diesel and WCO biodiesel blends (B5, B10 B20 and B100) at five different engine speed (1200 rpm, 1500 rpm, 1800 rpm, 2100 rpm and 2400 rpm) with constant load of 20 Nm. The comparison between diesel and WCO biodiesel blends has been made in terms of PM characterization which is PM mass concentration, its component ( soluble organic fraction (SOF) and soot) and its influence on PM formation, PM morphology and PM size distribution. In addition, combustion characteristic which is in-cylinder pressure of the engine as well as exhaust temperature also has been observed. The results show PM emission of B100 is lower than diesel fuel with variation of 5.56% to 21.82 % . This is due to oxygen content contained in B100. As for SOF concentration, blended fuels B10, B20, and B100 have higher SOF value (3.23 % to 82.36 % ) compared to diesel fuel at moderate and high engine speed. Meanwhile, soot concentration for blended fuels B10, B20 and B100 is lower (10 % to 62.50 %. ) compared to diesel fuel Observation on PM morphology shows that the images is chain-like agglomeration which is extremely small non uniform nanostructure. As for the PM size distribution, the trend were similar for diesel and WCO biodiesel blends. The size distribution of diesel fuel and WCO biodiesel blends were shifted to the larger size as the engine speed is increase d. Simultaneously, the size distribution is shifted to the smaller PM diameter as blending ratio of WCO biodiesel in the fuel blend is increase. The observation of in-cylinder pressure shows uncertain trend with the WCO biodiesel ratio in the fuel blend while decreasing with the increasing engine speed due to the prolong ignition delay period. At the same time, WCO biodiesel blends gives higher value of exhaust temperature which is 1.49 % compared to diesel fuel and it increases as the engine speed increase. In terms of gaseous emission, increasing engine speed increased the CO, CO2, NOx and NO emission while decrease the O2emission. The effect of WCO biodiesel blends on the gaseous emission shows uncertain trend while PM-NOx trade off observation showsB100 simultaneously decrease both NOx and PM emission at the same time. This study shows that the PM and gaseous emission as well as combustion characteristic of the WCO biodiesel are comparable with diesel fuel thus WCO biodiesel has potential as an alternative fuel to be used in diesel in the future.







Recent Technologies for Enhancing Performance and Reducing Emissions in Diesel Engines


Book Description

In today’s global context, there has been extensive research conducted in reducing harmful emissions to conserve and protect our environment. In the automobile and power generation industries, diesel engines are being utilized due to their high level of performance and fuel economy. However, these engines are producing harmful pollutants that contribute to several global threats including greenhouse gases and ozone layer depletion. Professionals have begun developing techniques to improve the performance and reduce emissions of diesel engines, but significant research is lacking in this area. Recent Technologies for Enhancing Performance and Reducing Emissions in Diesel Engines is a pivotal reference source that provides vital research on technical and environmental enhancements to the emission and combustion characteristics of diesel engines. While highlighting topics such as biodiesel emulsions, nanoparticle additives, and mathematical modeling, this publication explores the potential additives that have been incorporated into the performance of diesel engines in order to positively affect the environment. This book is ideally designed for chemical and electrical engineers, developers, researchers, power generation professionals, mechanical practitioners, scholars, ecologists, scientists, graduate students, and academicians seeking current research on modern innovations in fuel processing and environmental pollution control.




Green Diesel Engines


Book Description

With a focus on ecology, economy and engine performance, diesel engines are explored in relation to current research and developments. The prevalent trends in this development are outlined with particular focus on the most frequently used alternative fuels in diesel engines; the properties of various type of biodiesel and the concurrent improvement of diesel engine characteristics using numeric optimization alongside current investigation and research work in the field. Following of a short overview of engine control, aftertreatment and alternative fuels, Green Diesel Engine explores the effects of biodiesel usage on injection, fuel spray, combustion, and tribology characteristics, and engine performance. Additionally, optimization procedures of diesel engine characteristics are discussed using practical examples and each topic is corroborated and supported by current research and detailed illustrations. This thorough discussion provides a solid foundation in the current research but also a starting point for fresh ideas for engineers involved in developing/adjusting diesel engines for usage of alternative fuels, researchers in renewable energy, as well as to engineers, advanced undergraduates, and postgraduates.




Alternative Diesel Fuels


Book Description

A key topic of many technical discussions has been the development of alternative fuels to power the compression ignition engine. Reasons for this include the desire to reduce the dependency on petroleum-based fuel and, at the same time, to reduce the particulate matter (PM) and NOx emissions. Also, there has been interest generated in the diesel engine because of the reduction in greenhouse gases that has been proposed during the 2008-2012 time frame in Europe and the regulations that affect diesel engines in the United States.




Biodiesel Properties and Characterization of Particulate Matter Emissions from TARTA Buses Fueled by B20 Biodiesel


Book Description

Physical properties (cloud point, kinematic viscosity, and flash point) of biodiesel blends of commercial biodiesel fuels were measured. Four different biodiesel blends (10, 20, 50, 100 %) based on three feedstocks (tallow oil, soybean, and waste cooking oil) were tested, and the results were compared with ultra-low-sulfur diesel (ULSD). All the tests were conducted according to the American Society for Testing and Materials (ASTM) standard methods. The test results were evaluated statistically. The tested properties showed strong dependence on blends, which means that the percentage of biodiesel in a biodiesel/ULSD mixture is an important factor that determines the biodiesel properties. It was also found that the type of feedstock is a controlling factor in the biodiesel properties. Contents of saturated fatty acids and triglycerides at higher percentages are thought to be the main determinant of the degree of the dependence, and also the cause of undesired variations in the cold flow properties, kinematic viscosity and flash point. These variations may be controlled through modifications in the transesterification process or by using additives, which is necessary for better engine performance with biodiesel blends. Particulate matter (PM) emissions from mobile sources are the major contributors of urban atmospheric particulate matter especially PM2.5. Particulate matter released from diesel engines contains various organic and inorganic compounds. It is necessary to measure the PM size distribution shape, elemental and organic carbon etc., released from vehicles in order to quantify the source contribution and understand the possible health impacts. Previous studies stated PM2.5 and PM10 to be highly toxic and roots for respiratory illnesses such as asthma and chronic bronchitis, lung inflammation and also increases cardiovascular related risk factors. Biodiesel is one of alternative fuels that are being increasingly used to reduce the release of PM emissions from mobile sources. The current literature shows that the release of PM from transit buses decreases by increasing the biodiesel blend percentage with regular diesel. In this study, the experiments were conducted on the Toledo Area Regional Transit Authority (TARTA) buses 701 and 802, which run on B20 soybean biodiesel (20 vol% biodiesel + 80 vol% ultra-low sulfur diesel). PM emissions were collected on quartz filter papers and were further analyzed for PM characterization. A new approach of measuring particulate matter has been developed based on the dynamic light scattering and electric double layer of PM particles using a NICOMP 380 ZLS Zeta potential particle size analyzer and sonication process to suspend the PM into a liquid. Regardless of the bus number, average mean diameter was more for emissions from hot idling than cold. Also, 701 has PM of larger diameter than 802 in both idling modes. Tests results were also analyzed for Elemental Carbon (EC) and Organic Carbon (OC). Elemental carbon was formed from fuel rich engine locations at high combustion temperatures, whereas organic carbon was formed from primary fuel combustion and atmospheric chemical reactions at low vapor pressure. EC concentration has reduced to nearly 10% of TC from 701 to 802 during idle modes, whereas in the same situation OC concentration has increase to 89%. Hot idling has been the main source for EC emissions, and to control EC and PM emissions hot idling must be avoided. From all these finding in this study biodiesel fuel with NOx emission controlling equipment's are better than the conventional diesel fuels and are suitable for the diesel engines. This will help in improving the sustainability of the fuel and also moderate the emissions.