Machine Learning for Subsurface Characterization


Book Description

Machine Learning for Subsurface Characterization develops and applies neural networks, random forests, deep learning, unsupervised learning, Bayesian frameworks, and clustering methods for subsurface characterization. Machine learning (ML) focusses on developing computational methods/algorithms that learn to recognize patterns and quantify functional relationships by processing large data sets, also referred to as the "big data." Deep learning (DL) is a subset of machine learning that processes "big data" to construct numerous layers of abstraction to accomplish the learning task. DL methods do not require the manual step of extracting/engineering features; however, it requires us to provide large amounts of data along with high-performance computing to obtain reliable results in a timely manner. This reference helps the engineers, geophysicists, and geoscientists get familiar with data science and analytics terminology relevant to subsurface characterization and demonstrates the use of data-driven methods for outlier detection, geomechanical/electromagnetic characterization, image analysis, fluid saturation estimation, and pore-scale characterization in the subsurface. - Learn from 13 practical case studies using field, laboratory, and simulation data - Become knowledgeable with data science and analytics terminology relevant to subsurface characterization - Learn frameworks, concepts, and methods important for the engineer's and geoscientist's toolbox needed to support







Subsurface Characterization and Monitoring Techniques


Book Description

Provides information on where to go to find detailed guidance on how to use these techniques. Covers: remote sensing & surface geophysical methods; drilling & solids sampling methods; geophysical logging of boreholes; aquifer test methods; ground water sampling methods; Vadose Zone (VZ) hydrologic properties: water state, infiltration, conductivity, & flux; VZ water budget characterization methods; VZ soil-solute/gas sampling & monitoring methods; & chemical field screening & analytical methods. Charts, tables, graphs & drawings.




Quantifying Uncertainty in Subsurface Systems


Book Description

Under the Earth's surface is a rich array of geological resources, many with potential use to humankind. However, extracting and harnessing them comes with enormous uncertainties, high costs, and considerable risks. The valuation of subsurface resources involves assessing discordant factors to produce a decision model that is functional and sustainable. This volume provides real-world examples relating to oilfields, geothermal systems, contaminated sites, and aquifer recharge. Volume highlights include: A multi-disciplinary treatment of uncertainty quantification Case studies with actual data that will appeal to methodology developers A Bayesian evidential learning framework that reduces computation and modeling time Quantifying Uncertainty in Subsurface Systems is a multidisciplinary volume that brings together five major fields: information science, decision science, geosciences, data science and computer science. It will appeal to both students and practitioners, and be a valuable resource for geoscientists, engineers and applied mathematicians. Read the Editors' Vox: eos.org/editors-vox/quantifying-uncertainty-about-earths-resources




Multifrequency Electromagnetic Data Interpretation for Subsurface Characterization


Book Description

Multifrequency Electromagnetic Data Interpretation for Subsurface Characterization focuses on the development and application of electromagnetic measurement methodologies and their interpretation techniques for subsurface characterization. The book guides readers on how to characterize and understand materials using electromagnetic measurements, including dielectric permittivity, resistivity and conductivity measurements. This reference will be useful for subsurface engineers, petrophysicists, subsurface data analysts, geophysicists, hydrogeologists, and geoscientists who want to know how to develop tools and techniques of electromagnetic measurements and interpretation for subsurface characterization. - Includes case studies to add additional color to the presented content - Provides codes for the mechanistic modeling of multi-frequency conductivity and relative permittivity of porous geomaterials - Presents detailed descriptions of multifrequency electromagnetic data interpretation models and inversion algorithm







Subsurface Hydrology


Book Description

Published by the American Geophysical Union as part of the Geophysical Monograph Series, Volume 171. Groundwater is a critical resource and the PrinciPal source of drinking water for over 1.5 billion people. In 2001, the National Research Council cited as a "grand challenge" our need to understand the processes that control water movement in the subsurface. This volume faces that challenge in terms of data integration between complex, multi-scale hydrologie processes, and their links to other physical, chemical, and biological processes at multiple scales. Subsurface Hydrology: Data Integration for Properties and Processes presents the current state of the science in four aspects: Approaches to hydrologie data integration Data integration for characterization of hydrologie properties Data integration for understanding hydrologie processes Meta-analysis of current interpretations Scientists and researchers in the field, the laboratory, and the classroom will find this work an important resource in advancing our understanding of subsurface water movement.




Characterization, Modeling, Monitoring, and Remediation of Fractured Rock


Book Description

Fractured rock is the host or foundation for innumerable engineered structures related to energy, water, waste, and transportation. Characterizing, modeling, and monitoring fractured rock sites is critical to the functioning of those infrastructure, as well as to optimizing resource recovery and contaminant management. Characterization, Modeling, Monitoring, and Remediation of Fractured Rock examines the state of practice and state of art in the characterization of fractured rock and the chemical and biological processes related to subsurface contaminant fate and transport. This report examines new developments, knowledge, and approaches to engineering at fractured rock sites since the publication of the 1996 National Research Council report Rock Fractures and Fluid Flow: Contemporary Understanding and Fluid Flow. Fundamental understanding of the physical nature of fractured rock has changed little since 1996, but many new characterization tools have been developed, and there is now greater appreciation for the importance of chemical and biological processes that can occur in the fractured rock environment. The findings of Characterization, Modeling, Monitoring, and Remediation of Fractured Rock can be applied to all types of engineered infrastructure, but especially to engineered repositories for buried or stored waste and to fractured rock sites that have been contaminated as a result of past disposal or other practices. The recommendations of this report are intended to help the practitioner, researcher, and decision maker take a more interdisciplinary approach to engineering in the fractured rock environment. This report describes how existing tools-some only recently developed-can be used to increase the accuracy and reliability of engineering design and management given the interacting forces of nature. With an interdisciplinary approach, it is possible to conceptualize and model the fractured rock environment with acceptable levels of uncertainty and reliability, and to design systems that maximize remediation and long-term performance. Better scientific understanding could inform regulations, policies, and implementation guidelines related to infrastructure development and operations. The recommendations for research and applications to enhance practice of this book make it a valuable resource for students and practitioners in this field.




Seismic Attributes for Prospect Identification and Reservoir Characterization


Book Description

Introducing the physical basis, mathematical implementation, and geologic expression of modern volumetric attributes including coherence, dip/azimuth, curvature, amplitude gradients, seismic textures, and spectral decomposition, the authors demonstrate the importance of effective colour display and sensitivity to seismic acquisition and processing.




EPA National Publications Catalog


Book Description