Subsurface Upgrading of Heavy Crude Oils and Bitumen


Book Description

Heavy crude oils and bitumen represent more than 50% of all hydrocarbons available on the planet. These feedstocks have a low amount of distillable material and high level of contaminants that make their production, transportation, and refining difficult and costly by conventional technologies. Subsurface Upgrading of Heavy Crude Oils and Bitumen is of interest to the petroleum industry mainly because of the advantages compared to aboveground counterparts. The author presents an in-depth account and a critical review of the progress of industry and academia in underground or In-Situ upgrading of heavy, extra-heavy oils and bitumen, as reported in the patent and open literature. This work is aimed to be a standalone monograph, so three chapters are dedicated to the composition of petroleum and fundamentals of crude oil production and refining. Key Features: Offers a multidisciplinary scope that will appeal to chemists, geologists, biologists, chemical engineers, and petroleum engineers Presents the advantages and disadvantages of the technologies considered Discusses economic and environmental considerations for all the routes evaluated and offers perspectives from experts in the field working with highlighted technologies




Subsurface Upgrading of Heavy Crude Oils and Bitumen


Book Description

Heavy crude oils and bitumen represent more than 50% of all hydrocarbons available on the planet. These feedstocks have a low amount of distillable material and high level of contaminants that make their production, transportation, and refining difficult and costly by conventional technologies. Subsurface Upgrading of Heavy Crude Oils and Bitumen is of interest to the petroleum industry mainly because of the advantages compared to aboveground counterparts. The author presents an in-depth account and a critical review of the progress of industry and academia in underground or In-Situ upgrading of heavy, extra-heavy oils and bitumen, as reported in the patent and open literature. This work is aimed to be a standalone monograph, so three chapters are dedicated to the composition of petroleum and fundamentals of crude oil production and refining. Key Features: Offers a multidisciplinary scope that will appeal to chemists, geologists, biologists, chemical engineers, and petroleum engineers Presents the advantages and disadvantages of the technologies considered Discusses economic and environmental considerations for all the routes evaluated and offers perspectives from experts in the field working with highlighted technologies




Sustainable In-Situ Heavy Oil and Bitumen Recovery


Book Description

Sustainable In-Situ Heavy Oil and Bitumen Recovery: Techniques, Case Studies, and Environmental Considerations delivers a critical reference for today's energy engineers who want to gain an accurate understanding of anticipated GHG emissions in heavy oil recovery. Structured to break down every method with introductions, case studies, technical limitations and summaries, this reference gives engineers a look at the latest hybrid approaches needed to tackle heavy oil recoveries while calculating carbon footprints. Starting from basic definitions and rounding out with future challenges, this book will help energy engineers collectively evolve heavy oil recovery with sustainability applications in mind. - Explains environmental footprint considerations within each recovery method - Includes the latest hybrid methods such as Hybrid of Air-CO2N2 and Cyclic Steam Stimulation (CSS) - Bridges practical knowledge through case studies, summaries and remaining technical challenges




Spills of Diluted Bitumen from Pipelines


Book Description

Diluted bitumen has been transported by pipeline in the United States for more than 40 years, with the amount increasing recently as a result of improved extraction technologies and resulting increases in production and exportation of Canadian diluted bitumen. The increased importation of Canadian diluted bitumen to the United States has strained the existing pipeline capacity and contributed to the expansion of pipeline mileage over the past 5 years. Although rising North American crude oil production has resulted in greater transport of crude oil by rail or tanker, oil pipelines continue to deliver the vast majority of crude oil supplies to U.S. refineries. Spills of Diluted Bitumen from Pipelines examines the current state of knowledge and identifies the relevant properties and characteristics of the transport, fate, and effects of diluted bitumen and commonly transported crude oils when spilled in the environment. This report assesses whether the differences between properties of diluted bitumen and those of other commonly transported crude oils warrant modifications to the regulations governing spill response plans and cleanup. Given the nature of pipeline operations, response planning, and the oil industry, the recommendations outlined in this study are broadly applicable to other modes of transportation as well.




Heavy Oil Recovery and Upgrading


Book Description

Heavy Oil Recovery and Upgrading covers properties, factors, methods and all current and upcoming processes, giving engineers, new and experienced, the full spectrum of recovery choices, including SAGD, horizontal well technology, and hybrid approaches. Moving on to the upgrading and refining of the product, the book also includes information on in situ upgrading, refining options, and hydrogen production. Rounding out with environmental effects, management methods on refinery waste, and the possible future configurations within the refinery, this book provides engineers with a single source to make decisions and manage the full range of challenges. - Presents the properties, mechanisms, screening criteria and field applications for heavy oil enhanced recovery projects - Includes current upgrading options and future methods for refining heavy oil development - Fills in the gaps between literature and practical application for everyday industry reference




Introduction to Enhanced Recovery Methods for Heavy Oil and Tar Sands


Book Description

Introduction to Enhanced Recovery Methods for Heavy Oil and Tar Sands, Second Edition, explores the importance of enhanced oil recovery (EOR) and how it has grown in recent years thanks to the increased need to locate unconventional resources such as heavy oil and shale. Unfortunately, petroleum engineers and managers aren't always well-versed in the enhancement methods that are available when needed or the most economically viable solution to maximize their reservoir's productivity. This revised new edition presents all the current methods of recovery available, including the pros and cons of each. Expanded and updated as a great preliminary text for the newcomer to the industry or subject matter, this must-have EOR guide teaches all the basics needed, including all thermal and non-thermal methods, along with discussions of viscosity, sampling, and the technologies surrounding offshore applications. - Enables users to quickly learn how to choose the most efficient recovery method for their reservoir while evaluating economic conditions - Presents the differences between each method of recovery with newly added real-world case studies from around the world - Helps readers stay competitive with the growing need of extracting unconventional resources with new content on how these complex reservoirs interact with injected reservoir fluids







Macromolecular Characterization of Hydrocarbons for Sustainable Future


Book Description

This book discusses the macromolecular characterization of hydrocarbon components and their industrial applications for sustainable future development. It provides efficient integrated solutions and feasible industrial applications for sustainable cleaner and greener future. The book covers recent trends in the use of hydrocarbons such as crude oil, coal and shale, biomass and other carbon materials. Various topics covered in this book include challenges in mature field redevelopment, enhanced oil recovery, optical characteristics of petroleum crudes-surfactants-brine solutions, challenges and issues in processing hydrocarbons, 'coal for future cleaner fuel and chemicals' and 'biomass for fuels and chemicals'. The book is useful for the researchers and professionals working in the area of petroleum engineering.







Sub- and Supercritical Hydrothermal Technology


Book Description

Sub- and Supercritical Hydrothermal Technology: Industrial Applications offers a practical view of a variety of industrial applications and their challenges, offering a deep understanding of the application of sub- and supercritical fluids and their techno-economic viability. This book covers a wide range of applications of hydrothermal processing that result in almost zero waste, high energy efficiency, sustainable chemical processes, and minimal impact over the life cycle. These applications include processing of hazardous waste, bioproducts, coal, lipids, heavy oil and bitumen, and carbon materials. The use of hot-compressed water instead of different organic solvents, such as methanol, acetone, and hexane, is an environmentally benign, green, and sustainable option which can help to design chemical processes that support green chemistry and engineering. This book is pertinent for researchers and professionals in the fields of chemical engineering, industrial chemistry, environmental engineering, materials engineering, and manufacturing.